From 8196c06506246651d65bb0318c0c0e94db5d9da0 Mon Sep 17 00:00:00 2001
From: fwaters <fwaters@anaconda.com>
Date: Mon, 16 Sep 2019 14:08:34 +0000
Subject: [PATCH 09/21] intel umath optimizations

---
 numpy/core/code_generators/generate_umath.py  |   66 +-
 .../core/code_generators/ufunc_docstrings.py  |   63 +-
 numpy/core/include/numpy/npy_math.h           |   12 +
 numpy/core/setup.py                           |   27 +-
 numpy/core/setup_common.py                    |    8 +-
 numpy/core/src/npymath/npy_math_complex.c.src |   22 +-
 .../core/src/npymath/npy_math_internal.h.src  |   25 +-
 numpy/core/src/umath/fast_loop_macros.h       |   15 +
 numpy/core/src/umath/funcs.inc.src            |   14 +
 numpy/core/src/umath/loops.c.src              | 1872 +++++++++++++++--
 numpy/core/src/umath/loops.h.src              |   10 +-
 11 files changed, 1905 insertions(+), 229 deletions(-)

diff --git a/numpy/core/code_generators/generate_umath.py b/numpy/core/code_generators/generate_umath.py
index bf1747272..82550ffb8 100644
--- a/numpy/core/code_generators/generate_umath.py
+++ b/numpy/core/code_generators/generate_umath.py
@@ -620,6 +620,8 @@ defdict = {
     Ufunc(1, 1, None,
           docstrings.get('numpy.core.umath.arccos'),
           None,
+          TD('e', f='acos', astype={'e':'f'}),
+          TD(inexactvec),
           TD(inexact, f='acos', astype={'e':'f'}),
           TD(P, f='arccos'),
           ),
@@ -627,6 +629,8 @@ defdict = {
     Ufunc(1, 1, None,
           docstrings.get('numpy.core.umath.arccosh'),
           None,
+          TD('e', f='acosh', astype={'e':'f'}),
+          TD(inexactvec),
           TD(inexact, f='acosh', astype={'e':'f'}),
           TD(P, f='arccosh'),
           ),
@@ -634,6 +638,8 @@ defdict = {
     Ufunc(1, 1, None,
           docstrings.get('numpy.core.umath.arcsin'),
           None,
+          TD('e', f='asin', astype={'e':'f'}),
+          TD(inexactvec),
           TD(inexact, f='asin', astype={'e':'f'}),
           TD(P, f='arcsin'),
           ),
@@ -641,6 +647,8 @@ defdict = {
     Ufunc(1, 1, None,
           docstrings.get('numpy.core.umath.arcsinh'),
           None,
+          TD('e', f='asinh', astype={'e':'f'}),
+          TD(inexactvec),
           TD(inexact, f='asinh', astype={'e':'f'}),
           TD(P, f='arcsinh'),
           ),
@@ -648,6 +656,8 @@ defdict = {
     Ufunc(1, 1, None,
           docstrings.get('numpy.core.umath.arctan'),
           None,
+          TD('e', f='atan', astype={'e':'f'}),
+          TD(inexactvec),
           TD(inexact, f='atan', astype={'e':'f'}),
           TD(P, f='arctan'),
           ),
@@ -655,6 +665,8 @@ defdict = {
     Ufunc(1, 1, None,
           docstrings.get('numpy.core.umath.arctanh'),
           None,
+          TD('e', f='atanh', astype={'e':'f'}),
+          TD(inexactvec),
           TD(inexact, f='atanh', astype={'e':'f'}),
           TD(P, f='arctanh'),
           ),
@@ -662,6 +674,8 @@ defdict = {
     Ufunc(1, 1, None,
           docstrings.get('numpy.core.umath.cos'),
           None,
+          TD('e', f='cos', astype={'e':'f'}),
+          TD(inexactvec),
           TD(inexact, f='cos', astype={'e':'f'}),
           TD(P, f='cos'),
           ),
@@ -669,6 +683,8 @@ defdict = {
     Ufunc(1, 1, None,
           docstrings.get('numpy.core.umath.sin'),
           None,
+          TD('e', f='sin', astype={'e':'f'}),
+          TD(inexactvec),
           TD(inexact, f='sin', astype={'e':'f'}),
           TD(P, f='sin'),
           ),
@@ -676,6 +692,8 @@ defdict = {
     Ufunc(1, 1, None,
           docstrings.get('numpy.core.umath.tan'),
           None,
+          TD('e', f='tan', astype={'e':'f'}),
+          TD(inexactvec),
           TD(inexact, f='tan', astype={'e':'f'}),
           TD(P, f='tan'),
           ),
@@ -683,6 +701,8 @@ defdict = {
     Ufunc(1, 1, None,
           docstrings.get('numpy.core.umath.cosh'),
           None,
+          TD('e', f='cosh', astype={'e':'f'}),
+          TD(inexactvec),
           TD(inexact, f='cosh', astype={'e':'f'}),
           TD(P, f='cosh'),
           ),
@@ -690,6 +710,8 @@ defdict = {
     Ufunc(1, 1, None,
           docstrings.get('numpy.core.umath.sinh'),
           None,
+          TD('e', f='sinh', astype={'e':'f'}),
+          TD(inexactvec),
           TD(inexact, f='sinh', astype={'e':'f'}),
           TD(P, f='sinh'),
           ),
@@ -697,6 +719,8 @@ defdict = {
     Ufunc(1, 1, None,
           docstrings.get('numpy.core.umath.tanh'),
           None,
+          TD('e', f='tanh', astype={'e':'f'}),
+          TD(inexactvec),
           TD(inexact, f='tanh', astype={'e':'f'}),
           TD(P, f='tanh'),
           ),
@@ -705,7 +729,8 @@ defdict = {
           docstrings.get('numpy.core.umath.exp'),
           None,
           TD('e', f='exp', astype={'e':'f'}),
-          TD('f', simd=[('avx2', 'f'), ('avx512f', 'f')]),
+          # TD('f', simd=[('avx2', 'f'), ('avx512f', 'f')]),
+          TD(inexactvec),
           TD(inexact, f='exp', astype={'e':'f'}),
           TD(P, f='exp'),
           ),
@@ -720,15 +745,27 @@ defdict = {
     Ufunc(1, 1, None,
           docstrings.get('numpy.core.umath.expm1'),
           None,
+          TD('e', f='expm1', astype={'e':'f'}),
+          TD(inexactvec),
           TD(inexact, f='expm1', astype={'e':'f'}),
           TD(P, f='expm1'),
           ),
+'erf':
+    Ufunc(1, 1, None,
+          docstrings.get('numpy.core.umath.erf'),
+          None,
+          TD('e', f='erf', astype={'e':'f'}),
+          TD(inexactvec),
+          TD(flts, f='erf', astype={'e':'f'}),
+          TD(P, f='erf'),
+          ),
 'log':
     Ufunc(1, 1, None,
           docstrings.get('numpy.core.umath.log'),
           None,
           TD('e', f='log', astype={'e':'f'}),
-          TD('f', simd=[('avx2', 'f'), ('avx512f', 'f')]),
+          # TD('f', simd=[('avx2', 'f'), ('avx512f', 'f')]),
+          TD(inexactvec),
           TD(inexact, f='log', astype={'e':'f'}),
           TD(P, f='log'),
           ),
@@ -743,6 +780,8 @@ defdict = {
     Ufunc(1, 1, None,
           docstrings.get('numpy.core.umath.log10'),
           None,
+          TD('e', f='log10', astype={'e':'f'}),
+          TD(inexactvec),
           TD(inexact, f='log10', astype={'e':'f'}),
           TD(P, f='log10'),
           ),
@@ -750,6 +789,8 @@ defdict = {
     Ufunc(1, 1, None,
           docstrings.get('numpy.core.umath.log1p'),
           None,
+          TD('e', f='log1p', astype={'e':'f'}),
+          TD(inexactvec),
           TD(inexact, f='log1p', astype={'e':'f'}),
           TD(P, f='log1p'),
           ),
@@ -762,10 +803,21 @@ defdict = {
           TD(inexact, f='sqrt', astype={'e':'f'}),
           TD(P, f='sqrt'),
           ),
+'invsqrt':
+    Ufunc(1, 1, None,
+          docstrings.get('numpy.core.umath.invsqrt'),
+          None,
+          TD('e', f='invsqrt', astype={'e':'f'}),
+          TD(inexactvec),
+          TD(inexact, f='invsqrt', astype={'e':'f'}),
+          TD(P, f='invsqrt'),
+          ),
 'cbrt':
     Ufunc(1, 1, None,
           docstrings.get('numpy.core.umath.cbrt'),
           None,
+          TD('e', f='cbrt', astype={'e':'f'}),
+          TD(inexactvec),
           TD(flts, f='cbrt', astype={'e':'f'}),
           TD(P, f='cbrt'),
           ),
@@ -773,6 +825,8 @@ defdict = {
     Ufunc(1, 1, None,
           docstrings.get('numpy.core.umath.ceil'),
           None,
+          TD('e', f='ceil', astype={'e':'f'}),
+          TD(inexactvec),
           TD(flts, f='ceil', astype={'e':'f'}),
           TD(O, f='npy_ObjectCeil'),
           ),
@@ -780,6 +834,8 @@ defdict = {
     Ufunc(1, 1, None,
           docstrings.get('numpy.core.umath.trunc'),
           None,
+          TD('e', f='trunc', astype={'e':'f'}),
+          TD(inexactvec),
           TD(flts, f='trunc', astype={'e':'f'}),
           TD(O, f='npy_ObjectTrunc'),
           ),
@@ -787,6 +843,8 @@ defdict = {
     Ufunc(1, 1, None,
           docstrings.get('numpy.core.umath.fabs'),
           None,
+          TD('e', f='fabs', astype={'e':'f'}),
+          TD(inexactvec),
           TD(flts, f='fabs', astype={'e':'f'}),
           TD(P, f='fabs'),
        ),
@@ -794,6 +852,8 @@ defdict = {
     Ufunc(1, 1, None,
           docstrings.get('numpy.core.umath.floor'),
           None,
+          TD('e', f='floor', astype={'e':'f'}),
+          TD(inexactvec),
           TD(flts, f='floor', astype={'e':'f'}),
           TD(O, f='npy_ObjectFloor'),
           ),
@@ -801,6 +861,8 @@ defdict = {
     Ufunc(1, 1, None,
           docstrings.get('numpy.core.umath.rint'),
           None,
+          TD('e', f='rint', astype={'e':'f'}),
+          TD(inexactvec),
           TD(inexact, f='rint', astype={'e':'f'}),
           TD(P, f='rint'),
           ),
diff --git a/numpy/core/code_generators/ufunc_docstrings.py b/numpy/core/code_generators/ufunc_docstrings.py
index fb418aadc..19605a069 100644
--- a/numpy/core/code_generators/ufunc_docstrings.py
+++ b/numpy/core/code_generators/ufunc_docstrings.py
@@ -1118,6 +1118,40 @@ add_newdoc('numpy.core.umath', 'equal',
 
     """)
 
+add_newdoc('numpy.core.umath', 'erf',
+    """
+    Calculate the error function of all elements in the input array.
+
+    Parameters
+    ----------
+    x : array_like
+        Input values.
+    $PARAMS
+
+    Returns
+    -------
+    out : ndarray
+        Output array, element-wise integral (from [-x, x]) of
+        np.exp(np.power(-t, 2)) dt, multiplied by 1/np.pi.
+        $OUT_SCALAR_1
+
+    Notes
+    -----
+    The error function, known as the Gauss error function, is often used
+    in probability and statistics. The error function in statistics can be
+    interpreted as the probability X is in [-x, x] with a mean of 0 and
+    variance of 0.5.
+
+    References
+    ----------
+    .. [1] Wikipedia, "Exponential function",
+           http://en.wikipedia.org/wiki/Exponential_function
+    .. [2] M. Abramovitz and I. A.V Stegun, "Handbook of Mathematical Functions
+           with Formulas, Graphs, and Mathematical Tables," Dover, 1964, p. 297,
+           http://people.math.sfu.ca/~cbm/aands/page_297.htm
+
+    """)
+
 add_newdoc('numpy.core.umath', 'exp',
     """
     Calculate the exponential of all elements in the input array.
@@ -3578,6 +3612,34 @@ add_newdoc('numpy.core.umath', 'sqrt',
 
     """)
 
+add_newdoc('numpy.core.umath', 'invsqrt',
+    """
+    Return the positive 1/square-root of an array, element-wise.
+
+    Parameters
+    ----------
+    x : array_like
+        The values whose 1/square-roots are required.
+    $PARAMS
+
+    Returns
+    -------
+    y : ndarray
+        An array of the same shape as `x`, containing the positive
+        1/square-root of each element in `x`.  If any element in `x` is
+        complex, a complex array is returned (and the 1/square-roots of
+        negative reals are calculated).  If all of the elements in `x`
+        are real, so is `y`, with negative elements returning ``nan``.
+        If `out` was provided, `y` is a reference to it.
+        $OUT_SCALAR_1
+
+    Examples
+    --------
+    >>> np.invsqrt([1,4,9])
+    array([ 1.,  0.5,  0.33333])
+
+    """)
+
 add_newdoc('numpy.core.umath', 'cbrt',
     """
     Return the cube-root of an array, element-wise.
@@ -3598,7 +3660,6 @@ add_newdoc('numpy.core.umath', 'cbrt',
         If `out` was provided, `y` is a reference to it.
         $OUT_SCALAR_1
 
-
     Examples
     --------
     >>> np.cbrt([1,8,27])
diff --git a/numpy/core/include/numpy/npy_math.h b/numpy/core/include/numpy/npy_math.h
index 6a78ff3c2..72d95fa4c 100644
--- a/numpy/core/include/numpy/npy_math.h
+++ b/numpy/core/include/numpy/npy_math.h
@@ -178,8 +178,10 @@ NPY_INPLACE double npy_atan(double x);
 
 NPY_INPLACE double npy_log(double x);
 NPY_INPLACE double npy_log10(double x);
+NPY_INPLACE double npy_erf(double x);
 NPY_INPLACE double npy_exp(double x);
 NPY_INPLACE double npy_sqrt(double x);
+NPY_INPLACE double npy_invsqrt(double x);
 NPY_INPLACE double npy_cbrt(double x);
 
 NPY_INPLACE double npy_fabs(double x);
@@ -286,9 +288,11 @@ NPY_INPLACE float npy_ceilf(float x);
 NPY_INPLACE float npy_rintf(float x);
 NPY_INPLACE float npy_truncf(float x);
 NPY_INPLACE float npy_sqrtf(float x);
+NPY_INPLACE float npy_invsqrtf(float x);
 NPY_INPLACE float npy_cbrtf(float x);
 NPY_INPLACE float npy_log10f(float x);
 NPY_INPLACE float npy_logf(float x);
+NPY_INPLACE float npy_erff(float x);
 NPY_INPLACE float npy_expf(float x);
 NPY_INPLACE float npy_expm1f(float x);
 NPY_INPLACE float npy_asinf(float x);
@@ -329,9 +333,11 @@ NPY_INPLACE npy_longdouble npy_ceill(npy_longdouble x);
 NPY_INPLACE npy_longdouble npy_rintl(npy_longdouble x);
 NPY_INPLACE npy_longdouble npy_truncl(npy_longdouble x);
 NPY_INPLACE npy_longdouble npy_sqrtl(npy_longdouble x);
+NPY_INPLACE npy_longdouble npy_invsqrtl(npy_longdouble x);
 NPY_INPLACE npy_longdouble npy_cbrtl(npy_longdouble x);
 NPY_INPLACE npy_longdouble npy_log10l(npy_longdouble x);
 NPY_INPLACE npy_longdouble npy_logl(npy_longdouble x);
+NPY_INPLACE npy_longdouble npy_erfl(npy_longdouble x);
 NPY_INPLACE npy_longdouble npy_expl(npy_longdouble x);
 NPY_INPLACE npy_longdouble npy_expm1l(npy_longdouble x);
 NPY_INPLACE npy_longdouble npy_asinl(npy_longdouble x);
@@ -479,11 +485,13 @@ static NPY_INLINE npy_longdouble npy_cimagl(npy_clongdouble z)
 double npy_cabs(npy_cdouble z);
 double npy_carg(npy_cdouble z);
 
+npy_cdouble npy_cerf(npy_cdouble z);
 npy_cdouble npy_cexp(npy_cdouble z);
 npy_cdouble npy_clog(npy_cdouble z);
 npy_cdouble npy_cpow(npy_cdouble x, npy_cdouble y);
 
 npy_cdouble npy_csqrt(npy_cdouble z);
+npy_cdouble npy_cinvsqrt(npy_cdouble z);
 
 npy_cdouble npy_ccos(npy_cdouble z);
 npy_cdouble npy_csin(npy_cdouble z);
@@ -507,11 +515,13 @@ npy_cdouble npy_catanh(npy_cdouble z);
 float npy_cabsf(npy_cfloat z);
 float npy_cargf(npy_cfloat z);
 
+npy_cfloat npy_cerff(npy_cfloat z);
 npy_cfloat npy_cexpf(npy_cfloat z);
 npy_cfloat npy_clogf(npy_cfloat z);
 npy_cfloat npy_cpowf(npy_cfloat x, npy_cfloat y);
 
 npy_cfloat npy_csqrtf(npy_cfloat z);
+npy_cfloat npy_cinvsqrtf(npy_cfloat z);
 
 npy_cfloat npy_ccosf(npy_cfloat z);
 npy_cfloat npy_csinf(npy_cfloat z);
@@ -536,11 +546,13 @@ npy_cfloat npy_catanhf(npy_cfloat z);
 npy_longdouble npy_cabsl(npy_clongdouble z);
 npy_longdouble npy_cargl(npy_clongdouble z);
 
+npy_clongdouble npy_cerfl(npy_clongdouble z);
 npy_clongdouble npy_cexpl(npy_clongdouble z);
 npy_clongdouble npy_clogl(npy_clongdouble z);
 npy_clongdouble npy_cpowl(npy_clongdouble x, npy_clongdouble y);
 
 npy_clongdouble npy_csqrtl(npy_clongdouble z);
+npy_clongdouble npy_cinvsqrtl(npy_clongdouble z);
 
 npy_clongdouble npy_ccosl(npy_clongdouble z);
 npy_clongdouble npy_csinl(npy_clongdouble z);
diff --git a/numpy/core/setup.py b/numpy/core/setup.py
index 338502791..c20ff0f2e 100644
--- a/numpy/core/setup.py
+++ b/numpy/core/setup.py
@@ -10,6 +10,7 @@ import textwrap
 from os.path import join
 
 from numpy.distutils import log
+from numpy.distutils.system_info import get_info
 from distutils.dep_util import newer
 from distutils.sysconfig import get_config_var
 from numpy._build_utils.apple_accelerate import (
@@ -814,7 +815,6 @@ def configuration(parent_package='',top_path=None):
             join('include', 'numpy', 'noprefix.h'),
             join('include', 'numpy', 'npy_interrupt.h'),
             join('include', 'numpy', 'npy_3kcompat.h'),
-            join('include', 'numpy', 'npy_math.h'),
             join('include', 'numpy', 'halffloat.h'),
             join('include', 'numpy', 'npy_common.h'),
             join('include', 'numpy', 'npy_os.h'),
@@ -826,7 +826,7 @@ def configuration(parent_package='',top_path=None):
             join('include', 'numpy', 'npy_1_7_deprecated_api.h'),
             # add library sources as distuils does not consider libraries
             # dependencies
-            ] + npysort_sources + npymath_sources
+            ] + npysort_sources
 
     multiarray_src = [
             join('src', 'multiarray', 'alloc.c'),
@@ -893,13 +893,14 @@ def configuration(parent_package='',top_path=None):
                                                  generate_umath.__file__))
         return []
 
+    loops_src = [join('src', 'umath', 'loops.c.src'),
+                 join('src', 'umath', 'loops.h.src'),]
+
     umath_src = [
             join('src', 'umath', 'umathmodule.c'),
             join('src', 'umath', 'reduction.c'),
             join('src', 'umath', 'funcs.inc.src'),
             join('src', 'umath', 'simd.inc.src'),
-            join('src', 'umath', 'loops.h.src'),
-            join('src', 'umath', 'loops.c.src'),
             join('src', 'umath', 'matmul.h.src'),
             join('src', 'umath', 'matmul.c.src'),
             join('src', 'umath', 'clip.h.src'),
@@ -924,6 +925,21 @@ def configuration(parent_package='',top_path=None):
             join(codegen_dir, 'generate_ufunc_api.py'),
             ]
 
+    if platform.system() == "Windows":
+        eca = ['/fp:fast=2', '/Qimf-precision=high', '/Qprec-sqrt', '/Qstd=c99']
+        if sys.version_info < (3, 0):
+            eca.append('/Qprec-div')
+    else:
+        eca = ['-fp-model', 'fast=2', '-fimf-precision=high', '-prec-sqrt']
+    eca = []
+    config.add_library('loops',
+                       sources=loops_src,
+                       include_dirs=[],
+                       extra_compiler_args=eca,
+                       depends=deps + umath_deps,
+                       macros=getattr(config, 'define_macros', getattr(config.get_distribution(), 'define_macros', []))
+                       )
+
     config.add_extension('_multiarray_umath',
                          sources=multiarray_src + umath_src +
                                  npymath_sources + common_src +
@@ -935,9 +951,10 @@ def configuration(parent_package='',top_path=None):
                                   generate_umath_c,
                                   generate_ufunc_api,
                                  ],
+                         extra_compile_args=['/Qstd=c99' if platform.system() == "Windows" else ''],
                          depends=deps + multiarray_deps + umath_deps +
                                 common_deps,
-                         libraries=['npymath', 'npysort'],
+                         libraries=['loops', 'npymath', 'npysort'],
                          extra_info=extra_info)
 
     #######################################################################
diff --git a/numpy/core/setup_common.py b/numpy/core/setup_common.py
index 307fab334..f7f509765 100644
--- a/numpy/core/setup_common.py
+++ b/numpy/core/setup_common.py
@@ -102,13 +102,13 @@ def check_api_version(apiversion, codegen_dir):
                       MismatchCAPIWarning, stacklevel=2)
 # Mandatory functions: if not found, fail the build
 MANDATORY_FUNCS = ["sin", "cos", "tan", "sinh", "cosh", "tanh", "fabs",
-        "floor", "ceil", "sqrt", "log10", "log", "exp", "asin",
+        "floor", "ceil", "sqrt", "log10", "log", "erf", "exp", "asin",
         "acos", "atan", "fmod", 'modf', 'frexp', 'ldexp']
 
 # Standard functions which may not be available and for which we have a
 # replacement implementation. Note that some of these are C99 functions.
 OPTIONAL_STDFUNCS = ["expm1", "log1p", "acosh", "asinh", "atanh",
-        "rint", "trunc", "exp2", "log2", "hypot", "atan2", "pow",
+        "rint", "trunc", "exp2", "log2", "invsqrt", "hypot", "atan2", "pow",
         "copysign", "nextafter", "ftello", "fseeko",
         "strtoll", "strtoull", "cbrt", "strtold_l", "fallocate",
         "backtrace", "madvise"]
@@ -201,7 +201,7 @@ OPTIONAL_STDFUNCS_MAYBE = [
 # C99 functions: float and long double versions
 C99_FUNCS = [
     "sin", "cos", "tan", "sinh", "cosh", "tanh", "fabs", "floor", "ceil",
-    "rint", "trunc", "sqrt", "log10", "log", "log1p", "exp", "expm1",
+    "rint", "trunc", "sqrt", "log10", "log", "log1p", "erf", "exp", "expm1",
     "asin", "acos", "atan", "asinh", "acosh", "atanh", "hypot", "atan2",
     "pow", "fmod", "modf", 'frexp', 'ldexp', "exp2", "log2", "copysign",
     "nextafter", "cbrt"
@@ -213,7 +213,7 @@ C99_COMPLEX_TYPES = [
     ]
 C99_COMPLEX_FUNCS = [
     "cabs", "cacos", "cacosh", "carg", "casin", "casinh", "catan",
-    "catanh", "ccos", "ccosh", "cexp", "cimag", "clog", "conj", "cpow",
+    "catanh", "ccos", "ccosh", "cexp", "cimag", "clog", "cerf", "conj", "cpow",
     "cproj", "creal", "csin", "csinh", "csqrt", "ctan", "ctanh"
     ]
 
diff --git a/numpy/core/src/npymath/npy_math_complex.c.src b/numpy/core/src/npymath/npy_math_complex.c.src
index dad381232..3f6482531 100644
--- a/numpy/core/src/npymath/npy_math_complex.c.src
+++ b/numpy/core/src/npymath/npy_math_complex.c.src
@@ -369,6 +369,15 @@ npy_clog@c@(@ctype@ z)
 }
 #endif
 
+#ifndef HAVE_CERF@C@
+
+@ctype@
+npy_cerf@c@(@ctype@ z)
+{
+    return z;
+}
+#endif
+
 #ifndef HAVE_CSQRT@C@
 
 /* We risk spurious overflow for components >= DBL_MAX / (1 + sqrt(2)). */
@@ -446,6 +455,15 @@ npy_csqrt@c@(@ctype@ z)
 #undef THRESH
 #endif
 
+#ifndef HAVE_CINVSQRT@C@
+
+@ctype@
+npy_cinvsqrt@c@(@ctype@ z)
+{
+    return z;
+}
+#endif
+
 /*
  * Always use this function because of the multiplication for small
  * integer powers, but in the body use cpow if it is available.
@@ -1784,9 +1802,9 @@ npy_@kind@@c@(@ctype@ z)
 /**end repeat1**/
 
 /**begin repeat1
- * #kind = cexp,clog,csqrt,ccos,csin,ctan,ccosh,csinh,ctanh,
+ * #kind = cerf,cexp,clog,csqrt,cinvsqrt,ccos,csin,ctan,ccosh,csinh,ctanh,
  *         cacos,casin,catan,cacosh,casinh,catanh#
- * #KIND = CEXP,CLOG,CSQRT,CCOS,CSIN,CTAN,CCOSH,CSINH,CTANH,
+ * #KIND = CERF,CEXP,CLOG,CSQRT,CINVSQRT,CCOS,CSIN,CTAN,CCOSH,CSINH,CTANH,
  *         CACOS,CASIN,CATAN,CACOSH,CASINH,CATANH#
  */
 #ifdef HAVE_@KIND@@C@
diff --git a/numpy/core/src/npymath/npy_math_internal.h.src b/numpy/core/src/npymath/npy_math_internal.h.src
index fa820baac..2ced6a7d1 100644
--- a/numpy/core/src/npymath/npy_math_internal.h.src
+++ b/numpy/core/src/npymath/npy_math_internal.h.src
@@ -379,10 +379,10 @@ NPY_INPLACE double npy_log2(double x)
  */
 
 /**begin repeat1
- * #kind = sin,cos,tan,sinh,cosh,tanh,fabs,floor,ceil,rint,trunc,sqrt,log10,
- *         log,exp,expm1,asin,acos,atan,asinh,acosh,atanh,log1p,exp2,log2#
- * #KIND = SIN,COS,TAN,SINH,COSH,TANH,FABS,FLOOR,CEIL,RINT,TRUNC,SQRT,LOG10,
- *         LOG,EXP,EXPM1,ASIN,ACOS,ATAN,ASINH,ACOSH,ATANH,LOG1P,EXP2,LOG2#
+ * #kind = sin,cos,tan,sinh,cosh,tanh,fabs,floor,ceil,rint,trunc,sqrt,invsqrt,log10,
+ *         log,erf,exp,expm1,asin,acos,atan,asinh,acosh,atanh,log1p,exp2,log2#
+ * #KIND = SIN,COS,TAN,SINH,COSH,TANH,FABS,FLOOR,CEIL,RINT,TRUNC,SQRT,INVSQRT,LOG10,
+ *         LOG,ERF,EXP,EXPM1,ASIN,ACOS,ATAN,ASINH,ACOSH,ATANH,LOG1P,EXP2,LOG2#
  */
 
 #ifdef @kind@@c@
@@ -459,9 +459,9 @@ NPY_INPLACE @type@ npy_frexp@c@(@type@ x, int* exp)
  */
 /**begin repeat1
  * #kind = sin,cos,tan,sinh,cosh,tanh,fabs,floor,ceil,rint,trunc,sqrt,log10,
- *         log,exp,expm1,asin,acos,atan,asinh,acosh,atanh,log1p,exp2,log2#
+ *         log,erf,exp,expm1,asin,acos,atan,asinh,acosh,atanh,log1p,exp2,log2#
  * #KIND = SIN,COS,TAN,SINH,COSH,TANH,FABS,FLOOR,CEIL,RINT,TRUNC,SQRT,LOG10,
- *         LOG,EXP,EXPM1,ASIN,ACOS,ATAN,ASINH,ACOSH,ATANH,LOG1P,EXP2,LOG2#
+ *         LOG,ERF,EXP,EXPM1,ASIN,ACOS,ATAN,ASINH,ACOSH,ATANH,LOG1P,EXP2,LOG2#
  */
 #ifdef HAVE_@KIND@@C@
 NPY_INPLACE @type@ npy_@kind@@c@(@type@ x)
@@ -472,6 +472,19 @@ NPY_INPLACE @type@ npy_@kind@@c@(@type@ x)
 
 /**end repeat1**/
 
+/**begin repeat1
+ * #kind = invsqrt#
+ * #KIND = INVSQRT#
+ */
+#ifdef HAVE_@KIND@@C@
+NPY_INLINE @type@ npy_@kind@@c@(@type@ x)
+{
+    return 1/sqrt@c@(x);
+}
+#endif
+
+/**end repeat1**/
+
 /**begin repeat1
  * #kind = atan2,hypot,pow,fmod,copysign#
  * #KIND = ATAN2,HYPOT,POW,FMOD,COPYSIGN#
diff --git a/numpy/core/src/umath/fast_loop_macros.h b/numpy/core/src/umath/fast_loop_macros.h
index ae6d69a3e..facf1b408 100644
--- a/numpy/core/src/umath/fast_loop_macros.h
+++ b/numpy/core/src/umath/fast_loop_macros.h
@@ -34,6 +34,21 @@
     npy_intp i;\
     for(i = 0; i < n; i++, ip1 += is1, op1 += os1)
 
+#define UNARY_LOOP_VECTORIZED\
+    char *ip1 = args[0], *op1 = args[1];\
+    npy_intp is1 = steps[0], os1 = steps[1];\
+    npy_intp n = dimensions[0];\
+    npy_intp i;\
+    _Pragma("vector")\
+    for(i = 0; i < n; i++, ip1 += is1, op1 += os1)
+
+#define UNARY_LOOP_DISPATCH(cond, body)\
+    if (cond) {\
+        UNARY_LOOP_VECTORIZED { body; }\
+    } else {\
+        UNARY_LOOP { body; }\
+    }
+
 /** (ip1) -> (op1, op2) */
 #define UNARY_LOOP_TWO_OUT\
     char *ip1 = args[0], *op1 = args[1], *op2 = args[2];\
diff --git a/numpy/core/src/umath/funcs.inc.src b/numpy/core/src/umath/funcs.inc.src
index c2732f925..b04c63e47 100644
--- a/numpy/core/src/umath/funcs.inc.src
+++ b/numpy/core/src/umath/funcs.inc.src
@@ -314,6 +314,13 @@ nc_sqrt@c@(@ctype@ *x, @ctype@ *r)
     return;
 }
 
+static void
+nc_invsqrt@c@(@ctype@ *x, @ctype@ *r)
+{
+    *r = npy_cinvsqrt@c@(*x);
+    return;
+}
+
 static void
 nc_rint@c@(@ctype@ *x, @ctype@ *r)
 {
@@ -337,6 +344,13 @@ nc_log1p@c@(@ctype@ *x, @ctype@ *r)
     return;
 }
 
+static void
+nc_erf@c@(@ctype@ *x, @ctype@ *r)
+{
+    *r = npy_cerf@c@(*x);
+    return;
+}
+
 static void
 nc_exp@c@(@ctype@ *x, @ctype@ *r)
 {
diff --git a/numpy/core/src/umath/loops.c.src b/numpy/core/src/umath/loops.c.src
index f84d74efe..348033526 100644
--- a/numpy/core/src/umath/loops.c.src
+++ b/numpy/core/src/umath/loops.c.src
@@ -1,5 +1,6 @@
 /* -*- c -*- */
-
+#include "mkl.h"
+#include <fenv.h>
 #define _UMATHMODULE
 #define _MULTIARRAYMODULE
 #define NPY_NO_DEPRECATED_API NPY_API_VERSION
@@ -20,14 +21,6 @@
 
 #include <string.h> /* for memchr */
 
-/*
- * cutoff blocksize for pairwise summation
- * decreasing it decreases errors slightly as more pairs are summed but
- * also lowers performance, as the inner loop is unrolled eight times it is
- * effectively 16
- */
-#define PW_BLOCKSIZE    128
-
 
 /*
  * largest simd vector size in bytes numpy supports
@@ -38,6 +31,82 @@
 #define NPY_MAX_SIMD_SIZE 1024
 #endif
 
+/*
+ * cutoff blocksize for pairwise summation
+ * decreasing it decreases errors slightly as more pairs are summed but
+ * also lowers performance, as the inner loop is unrolled eight times it is
+ * effectively 16
+ */
+#define PW_BLOCKSIZE    128
+#define VML_TRANSCEDENTAL_THRESHOLD 8192
+#define VML_ASM_THRESHOLD 100000
+#define VML_D_THRESHOLD 8000
+
+#define MKL_INT_MAX ((npy_intp) ((~((MKL_UINT) 0)) >> 1))
+
+#define CHUNKED_VML_CALL2(vml_func, n, type, in1, op1)   \
+    do {                                                 \
+        npy_intp _n_ = (n);                              \
+        const npy_intp _chunk_size = MKL_INT_MAX;        \
+        type *in1p = (type *) (in1);                     \
+        type *op1p = (type *) (op1);                     \
+        while (_n_ > _chunk_size) {                      \
+            vml_func((MKL_INT) _chunk_size, in1p, op1p); \
+            _n_ -= _chunk_size;                          \
+            in1p += _chunk_size;                         \
+            op1p += _chunk_size;                         \
+        }                                                \
+        if (_n_) {                                       \
+            vml_func((MKL_INT) _n_, in1p, op1p);         \
+        }                                                \
+    } while (0)
+
+#define CHUNKED_VML_CALL3(vml_func, n, type, in1, in2, op1)     \
+    do  {                                                       \
+        npy_intp _n_ = (n);                                     \
+        const npy_intp _chunk_size = MKL_INT_MAX;               \
+        type *in1p = (type *) (in1);                            \
+        type *in2p = (type *) (in2);                            \
+        type *op1p = (type *) (op1);                            \
+        while (_n_ > _chunk_size) {                             \
+            vml_func((MKL_INT) _chunk_size, in1p, in2p, op1p);  \
+            _n_ -= _chunk_size;                                 \
+            in1p += _chunk_size;                                \
+            in2p += _chunk_size;                                \
+            op1p += _chunk_size;                                \
+        }                                                       \
+        if (_n_) {                                              \
+            vml_func((MKL_INT)_n_, in1p, in2p, op1p);           \
+        }                                                       \
+    } while(0)
+
+
+#define CHUNKED_VML_LINEARFRAC_CALL(vml_func, n, type, in1, op1, scaleA, shiftA, scaleB, shiftB) \
+     do {                                                                                        \
+        npy_intp _n_ = (n);                                                                      \
+        const npy_intp _chunk_size = MKL_INT_MAX;                                                \
+        type *in1p = (type *) (in1);                                                             \
+        type *op1p = (type *) (op1);                                                             \
+        const type _scaleA = (scaleA);                                                           \
+        const type _shiftA = (shiftA);                                                           \
+        const type _scaleB = (scaleB);                                                           \
+        const type _shiftB = (shiftB);                                                           \
+        while (_n_ > _chunk_size) {                                                              \
+            vml_func(_chunk_size, in1p, in1p, _scaleA, _shiftA, _scaleB, _shiftB, op1p);         \
+            _n_ -= _chunk_size;                                                                  \
+            in1p += _chunk_size;                                                                 \
+            op1p += _chunk_size;                                                                 \
+        }                                                                                        \
+        if (_n_) {                                                                               \
+            vml_func((MKL_INT)_n_, in1p, in1p, _scaleA, _shiftA, _scaleB, _shiftB, op1p);        \
+        }                                                                                        \
+    } while(0)
+
+/* for pointers p1, and p2 pointing at contiguous arrays n-elements of size s, are arrays disjoint or same
+ *  when these conditions are not met VML functions may product incorrect output
+ */
+#define DISJOINT_OR_SAME(p1, p2, n, s) (((p1) == (p2)) || ((p2) + (n)*(s) < (p1)) || ((p1) + (n)*(s) < (p2)) )
+
 /*
  * include vectorized functions and dispatchers
  * this file is safe to include also for generic builds
@@ -49,6 +118,7 @@
 /** Provides the various *_LOOP macros */
 #include "fast_loop_macros.h"
 
+#include <stdio.h>
 
 /******************************************************************************
  **                          GENERIC FLOAT LOOPS                             **
@@ -645,14 +715,9 @@ BOOL_@kind@(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED
 NPY_NO_EXPORT void
 BOOL_@kind@(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
 {
-    if (run_unary_simd_@kind@_BOOL(args, dimensions, steps)) {
-        return;
-    }
-    else {
-        UNARY_LOOP {
-            npy_bool in1 = *(npy_bool *)ip1;
-            *((npy_bool *)op1) = in1 @OP@ 0;
-        }
+    UNARY_LOOP {
+        npy_bool in1 = *(npy_bool *)ip1;
+        *((npy_bool *)op1) = in1 @OP@ 0;
     }
 }
 /**end repeat**/
@@ -836,6 +901,9 @@ NPY_NO_EXPORT NPY_GCC_OPT_3 @ATTR@ void
  * #OP =  >, <#
  **/
 
+#if defined(__ICC) || defined(__INTEL_COMPILER)
+#pragma intel optimization_level 2
+#endif
 NPY_NO_EXPORT void
 @TYPE@_@kind@(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
 {
@@ -1575,148 +1643,141 @@ TIMEDELTA_mm_qm_divmod(char **args, npy_intp *dimensions, npy_intp *steps, void
  * Float types
  *  #type = npy_float, npy_double#
  *  #TYPE = FLOAT, DOUBLE#
+ *  #c = s, d#
  *  #scalarf = npy_sqrtf, npy_sqrt#
  */
 
 NPY_NO_EXPORT void
 @TYPE@_sqrt(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
 {
-    if (!run_unary_simd_sqrt_@TYPE@(args, dimensions, steps)) {
-        UNARY_LOOP {
+    if(IS_UNARY_CONT(@type@, @type@) &&
+           dimensions[0] > VML_TRANSCEDENTAL_THRESHOLD &&
+           DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@))) {
+        CHUNKED_VML_CALL2(v@c@Sqrt, dimensions[0], @type@, args[0], args[1]);
+        /* v@c@Sqrt(dimensions[0], (@type@*) args[0], (@type@*) args[1]); */
+    } else {
+        UNARY_LOOP_DISPATCH(
+            DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@))
+            ,
             const @type@ in1 = *(@type@ *)ip1;
             *(@type@ *)op1 = @scalarf@(in1);
-        }
+	)
     }
 }
 
 /**end repeat**/
 
 /**begin repeat
- *  #func = exp, log#
- *  #scalarf = npy_expf, npy_logf#
+ * Float types
+ *  #type = npy_float, npy_double#
+ *  #TYPE = FLOAT, DOUBLE#
+ *  #c = s, d#
+ *  #scalarf = npy_invsqrtf, npy_invsqrt#
  */
 
-NPY_NO_EXPORT NPY_GCC_OPT_3 void
-FLOAT_@func@(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(data))
+NPY_NO_EXPORT void
+@TYPE@_invsqrt(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
 {
-    UNARY_LOOP {
-	const npy_float in1 = *(npy_float *)ip1;
-	*(npy_float *)op1 = @scalarf@(in1);
+    if(IS_UNARY_CONT(@type@, @type@) &&
+           dimensions[0] > VML_TRANSCEDENTAL_THRESHOLD &&
+           DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@)) ) {
+        CHUNKED_VML_CALL2(v@c@InvSqrt, dimensions[0], @type@, args[0], args[1]);
+        /* v@c@InvSqrt(dimensions[0], (@type@*) args[0], (@type@*) args[1]); */
+    } else {
+        UNARY_LOOP_DISPATCH(
+            DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@))
+            ,
+            const @type@ in1 = *(@type@ *)ip1;
+            *(@type@ *)op1 = @scalarf@(in1);
+	)
     }
 }
 
 /**end repeat**/
 
 /**begin repeat
- * #isa = avx512f, avx2#
- * #ISA = AVX512F, AVX2#
- * #CHK = HAVE_ATTRIBUTE_TARGET_AVX512F_WITH_INTRINSICS, HAVE_ATTRIBUTE_TARGET_AVX2_WITH_INTRINSICS#
- */
-
-/**begin repeat1
- *  #func = exp, log#
- *  #scalarf = npy_expf, npy_logf#
+ * Float types
+ *  #type = npy_float, npy_double#
+ *  #TYPE = FLOAT, DOUBLE#
+ *  #A = F, #
+ *  #c = s, d#
+ *  #scalarf = npy_expf, npy_exp#
  */
 
-NPY_NO_EXPORT NPY_GCC_OPT_3 void
-FLOAT_@func@_@isa@(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(data))
+NPY_NO_EXPORT void
+@TYPE@_exp(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
 {
-    if (!run_unary_@isa@_@func@_FLOAT(args, dimensions, steps)) {
-        UNARY_LOOP {
-            /*
-             * We use the AVX function to compute exp/log for scalar elements as well.
-             * This is needed to ensure the output of strided and non-strided
-             * cases match. SIMD code handles strided input cases, but not
-             * strided output.
-             */
-#if defined @CHK@ && defined NPY_HAVE_SSE2_INTRINSICS
-            @ISA@_@func@_FLOAT((npy_float *)op1, (npy_float *)ip1, 1, steps[0]);
-#else
-            const npy_float in1 = *(npy_float *)ip1;
-            *(npy_float *)op1 = @scalarf@(in1);
-#endif
-        }
+    int ignore_fpstatus = 0;
+
+    if(IS_UNARY_CONT(@type@, @type@) &&
+           dimensions[0] > VML_TRANSCEDENTAL_THRESHOLD &&
+           DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@))) {
+        ignore_fpstatus = 1;
+        CHUNKED_VML_CALL2(v@c@Exp, dimensions[0], @type@, args[0], args[1]);
+        /* v@c@Exp(dimensions[0], (@type@*) args[0], (@type@*) args[1]); */
+    } else {
+        UNARY_LOOP_DISPATCH(
+            DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@))
+            ,
+            const @type@ in1 = *(@type@ *)ip1;
+            if(1 == 1) {//if(in1 == -NPY_INFINITY@A@){
+                ignore_fpstatus = 1;
+            }
+            *(@type@ *)op1 = @scalarf@(in1);
+	)
+    }
+    if(ignore_fpstatus) {
+        feclearexcept(FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW | FE_INVALID);
     }
 }
 
-/**end repeat1**/
 /**end repeat**/
 
 /**begin repeat
  * Float types
- *  #type = npy_float, npy_double, npy_longdouble, npy_float#
- *  #dtype = npy_float, npy_double, npy_longdouble, npy_half#
- *  #TYPE = FLOAT, DOUBLE, LONGDOUBLE, HALF#
- *  #c = f, , l, #
- *  #C = F, , L, #
- *  #trf = , , , npy_half_to_float#
+ *  #type = npy_float, npy_double#
+ *  #TYPE = FLOAT, DOUBLE#
+ *  #c = s, d#
+ *  #scalarf = npy_exp2f, npy_exp2#
  */
 
-/*
- * Pairwise summation, rounding error O(lg n) instead of O(n).
- * The recursion depth is O(lg n) as well.
- * when updating also update similar complex floats summation
- */
-static @type@
-pairwise_sum_@TYPE@(char *a, npy_intp n, npy_intp stride)
+/* TODO: Use VML */
+NPY_NO_EXPORT void
+@TYPE@_exp2(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
 {
-    if (n < 8) {
-        npy_intp i;
-        @type@ res = 0.;
-
-        for (i = 0; i < n; i++) {
-            res += @trf@(*((@dtype@*)(a + i * stride)));
-        }
-        return res;
-    }
-    else if (n <= PW_BLOCKSIZE) {
-        npy_intp i;
-        @type@ r[8], res;
-
-        /*
-         * sum a block with 8 accumulators
-         * 8 times unroll reduces blocksize to 16 and allows vectorization with
-         * avx without changing summation ordering
-         */
-        r[0] = @trf@(*((@dtype@ *)(a + 0 * stride)));
-        r[1] = @trf@(*((@dtype@ *)(a + 1 * stride)));
-        r[2] = @trf@(*((@dtype@ *)(a + 2 * stride)));
-        r[3] = @trf@(*((@dtype@ *)(a + 3 * stride)));
-        r[4] = @trf@(*((@dtype@ *)(a + 4 * stride)));
-        r[5] = @trf@(*((@dtype@ *)(a + 5 * stride)));
-        r[6] = @trf@(*((@dtype@ *)(a + 6 * stride)));
-        r[7] = @trf@(*((@dtype@ *)(a + 7 * stride)));
-
-        for (i = 8; i < n - (n % 8); i += 8) {
-            /* small blocksizes seems to mess with hardware prefetch */
-            NPY_PREFETCH(a + (i + 512/(npy_intp)sizeof(@dtype@))*stride, 0, 3);
-            r[0] += @trf@(*((@dtype@ *)(a + (i + 0) * stride)));
-            r[1] += @trf@(*((@dtype@ *)(a + (i + 1) * stride)));
-            r[2] += @trf@(*((@dtype@ *)(a + (i + 2) * stride)));
-            r[3] += @trf@(*((@dtype@ *)(a + (i + 3) * stride)));
-            r[4] += @trf@(*((@dtype@ *)(a + (i + 4) * stride)));
-            r[5] += @trf@(*((@dtype@ *)(a + (i + 5) * stride)));
-            r[6] += @trf@(*((@dtype@ *)(a + (i + 6) * stride)));
-            r[7] += @trf@(*((@dtype@ *)(a + (i + 7) * stride)));
-        }
+    UNARY_LOOP_DISPATCH(
+        DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@))
+        ,
+        const @type@ in1 = *(@type@ *)ip1;
+        *(@type@ *)op1 = @scalarf@(in1);
+    )
+}
 
-        /* accumulate now to avoid stack spills for single peel loop */
-        res = ((r[0] + r[1]) + (r[2] + r[3])) +
-              ((r[4] + r[5]) + (r[6] + r[7]));
+/**end repeat**/
 
-        /* do non multiple of 8 rest */
-        for (; i < n; i++) {
-            res += @trf@(*((@dtype@ *)(a + i * stride)));
-        }
-        return res;
-    }
-    else {
-        /* divide by two but avoid non-multiples of unroll factor */
-        npy_intp n2 = n / 2;
+/**begin repeat
+ * Float types
+ *  #type = npy_float, npy_double#
+ *  #TYPE = FLOAT, DOUBLE#
+ *  #c = s, d#
+ *  #scalarf = npy_expm1f, npy_expm1#
+ */
 
-        n2 -= n2 % 8;
-        return pairwise_sum_@TYPE@(a, n2, stride) +
-               pairwise_sum_@TYPE@(a + n2 * stride, n - n2, stride);
+NPY_NO_EXPORT void
+@TYPE@_expm1(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
+{
+    if(IS_UNARY_CONT(@type@, @type@) &&
+           dimensions[0] > VML_TRANSCEDENTAL_THRESHOLD &&
+           DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@)) ) {
+        CHUNKED_VML_CALL2(v@c@Expm1, dimensions[0], @type@, args[0], args[1]);
+        /* v@c@Expm1(dimensions[0], (@type@*) args[0], (@type@*) args[1]); */
+    } else {
+        UNARY_LOOP_DISPATCH(
+            DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@))
+	    ,
+            const @type@ in1 = *(@type@ *)ip1;
+            *(@type@ *)op1 = @scalarf@(in1);
+	)
     }
 }
 
@@ -1724,112 +1785,1458 @@ pairwise_sum_@TYPE@(char *a, npy_intp n, npy_intp stride)
 
 /**begin repeat
  * Float types
- *  #type = npy_float, npy_double, npy_longdouble#
- *  #TYPE = FLOAT, DOUBLE, LONGDOUBLE#
- *  #c = f, , l#
- *  #C = F, , L#
+ *  #type = npy_float, npy_double#
+ *  #TYPE = FLOAT, DOUBLE#
+ *  #c = s, d#
+ *  #scalarf = npy_erff, npy_erf#
  */
 
-/**begin repeat1
- * Arithmetic
- * # kind = add, subtract, multiply, divide#
- * # OP = +, -, *, /#
- * # PW = 1, 0, 0, 0#
- */
 NPY_NO_EXPORT void
-@TYPE@_@kind@(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
+@TYPE@_erf(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
 {
-    if (IS_BINARY_REDUCE) {
-#if @PW@
-        @type@ * iop1 = (@type@ *)args[0];
-        npy_intp n = dimensions[0];
-
-        *iop1 @OP@= pairwise_sum_@TYPE@(args[1], n, steps[1]);
-#else
-        BINARY_REDUCE_LOOP(@type@) {
-            io1 @OP@= *(@type@ *)ip2;
-        }
-        *((@type@ *)iop1) = io1;
-#endif
-    }
-    else if (!run_binary_simd_@kind@_@TYPE@(args, dimensions, steps)) {
-        BINARY_LOOP {
+    if(IS_UNARY_CONT(@type@, @type@) &&
+           dimensions[0] > VML_TRANSCEDENTAL_THRESHOLD &&
+           DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@)) ) {
+        CHUNKED_VML_CALL2(v@c@Erf, dimensions[0], @type@, args[0], args[1]);
+        /* v@c@Erf(dimensions[0], (@type@*) args[0], (@type@*) args[1]); */
+    } else {
+        UNARY_LOOP_DISPATCH(
+            DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@))
+	    ,
             const @type@ in1 = *(@type@ *)ip1;
-            const @type@ in2 = *(@type@ *)ip2;
-            *((@type@ *)op1) = in1 @OP@ in2;
-        }
+            *(@type@ *)op1 = @scalarf@(in1);
+	)
     }
 }
-/**end repeat1**/
 
-/**begin repeat1
- * #kind = equal, not_equal, less, less_equal, greater, greater_equal,
- *        logical_and, logical_or#
- * #OP = ==, !=, <, <=, >, >=, &&, ||#
+/**end repeat**/
+
+/**begin repeat
+ * Float types
+ *  #type = npy_float, npy_double#
+ *  #TYPE = FLOAT, DOUBLE#
+ *  #c = s, d#
+ *  #scalarf = npy_logf, npy_log#
  */
+
 NPY_NO_EXPORT void
-@TYPE@_@kind@(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
+@TYPE@_log(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
 {
-    if (!run_binary_simd_@kind@_@TYPE@(args, dimensions, steps)) {
-        BINARY_LOOP {
+    if(IS_UNARY_CONT(@type@, @type@) &&
+           dimensions[0] > VML_TRANSCEDENTAL_THRESHOLD &&
+           DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@)) ) {
+        CHUNKED_VML_CALL2(v@c@Ln, dimensions[0], @type@, args[0], args[1]);
+        /* v@c@Ln(dimensions[0], (@type@*) args[0], (@type@*) args[1]); */
+    } else {
+        UNARY_LOOP_DISPATCH(
+            DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@))
+	    ,
             const @type@ in1 = *(@type@ *)ip1;
-            const @type@ in2 = *(@type@ *)ip2;
-            *((npy_bool *)op1) = in1 @OP@ in2;
-        }
+            *(@type@ *)op1 = @scalarf@(in1);
+	)
     }
 }
-/**end repeat1**/
 
+/**end repeat**/
+
+/**begin repeat
+ * Float types
+ *  #type = npy_float, npy_double#
+ *  #TYPE = FLOAT, DOUBLE#
+ *  #c = s, d#
+ *  #scalarf = npy_log2f, npy_log2#
+ */
+
+/* TODO: Use VML */
 NPY_NO_EXPORT void
-@TYPE@_logical_xor(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
+@TYPE@_log2(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
 {
-    BINARY_LOOP {
-        const int t1 = !!*(@type@ *)ip1;
-        const int t2 = !!*(@type@ *)ip2;
-        *((npy_bool *)op1) = (t1 != t2);
-    }
+    UNARY_LOOP_DISPATCH(
+        DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@))
+        ,
+        const @type@ in1 = *(@type@ *)ip1;
+        *(@type@ *)op1 = @scalarf@(in1);
+    )
 }
 
+/**end repeat**/
+
+/**begin repeat
+ * Float types
+ *  #type = npy_float, npy_double#
+ *  #TYPE = FLOAT, DOUBLE#
+ *  #c = s, d#
+ *  #scalarf = npy_log10f, npy_log10#
+ */
+
 NPY_NO_EXPORT void
-@TYPE@_logical_not(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
+@TYPE@_log10(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
 {
-    UNARY_LOOP {
-        const @type@ in1 = *(@type@ *)ip1;
-        *((npy_bool *)op1) = !in1;
+    if(IS_UNARY_CONT(@type@, @type@) &&
+           dimensions[0] > VML_TRANSCEDENTAL_THRESHOLD &&
+           DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@)) ) {
+        CHUNKED_VML_CALL2(v@c@Log10, dimensions[0], @type@, args[0], args[1]);
+        /* v@c@Log10(dimensions[0], (@type@*) args[0], (@type@*) args[1]); */
+    } else {
+        UNARY_LOOP_DISPATCH(
+            DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@))
+	    ,
+            const @type@ in1 = *(@type@ *)ip1;
+            *(@type@ *)op1 = @scalarf@(in1);
+	)
     }
 }
 
-/**begin repeat1
- * #kind = isnan, isinf, isfinite, signbit#
- * #func = npy_isnan, npy_isinf, npy_isfinite, npy_signbit#
- **/
+/**end repeat**/
+
+/**begin repeat
+ * Float types
+ *  #type = npy_float, npy_double#
+ *  #TYPE = FLOAT, DOUBLE#
+ *  #c = s, d#
+ *  #scalarf = npy_log1pf, npy_log1p#
+ */
+
 NPY_NO_EXPORT void
-@TYPE@_@kind@(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
+@TYPE@_log1p(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
 {
-    if (!run_@kind@_simd_@TYPE@(args, dimensions, steps)) {
-        UNARY_LOOP {
+    if(IS_UNARY_CONT(@type@, @type@) &&
+           dimensions[0] > VML_TRANSCEDENTAL_THRESHOLD &&
+           DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@)) ) {
+        CHUNKED_VML_CALL2(v@c@Log1p, dimensions[0], @type@, args[0], args[1]);
+        /* v@c@Log1p(dimensions[0], (@type@*) args[0], (@type@*) args[1]); */
+    } else {
+        UNARY_LOOP_DISPATCH(
+            DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@))
+	    ,
             const @type@ in1 = *(@type@ *)ip1;
-            *((npy_bool *)op1) = @func@(in1) != 0;
-        }
+            *(@type@ *)op1 = @scalarf@(in1);
+	)
     }
-    npy_clear_floatstatus_barrier((char*)dimensions);
 }
-/**end repeat1**/
+
+/**end repeat**/
+
+/**begin repeat
+ * Float types
+ *  #type = npy_float, npy_double#
+ *  #TYPE = FLOAT, DOUBLE#
+ *  #c = s, d#
+ *  #scalarf = npy_cosf, npy_cos#
+ */
 
 NPY_NO_EXPORT void
-@TYPE@_spacing(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
+@TYPE@_cos(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
 {
-    UNARY_LOOP {
-        const @type@ in1 = *(@type@ *)ip1;
-        *((@type@ *)op1) = npy_spacing@c@(in1);
+    if(IS_UNARY_CONT(@type@, @type@) &&
+           dimensions[0] > VML_TRANSCEDENTAL_THRESHOLD &&
+           DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@)) ) {
+        CHUNKED_VML_CALL2(v@c@Cos, dimensions[0], @type@, args[0], args[1]);
+        /* v@c@Cos(dimensions[0], (@type@*) args[0], (@type@*) args[1]); */
+    } else {
+        UNARY_LOOP_DISPATCH(
+            DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@))
+	    ,
+            const @type@ in1 = *(@type@ *)ip1;
+            *(@type@ *)op1 = @scalarf@(in1);
+	)
     }
 }
 
-NPY_NO_EXPORT void
-@TYPE@_copysign(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
-{
-    BINARY_LOOP {
-        const @type@ in1 = *(@type@ *)ip1;
+/**end repeat**/
+
+/**begin repeat
+ * Float types
+ *  #type = npy_float, npy_double#
+ *  #TYPE = FLOAT, DOUBLE#
+ *  #c = s, d#
+ *  #scalarf = npy_sinf, npy_sin#
+ */
+
+NPY_NO_EXPORT void
+@TYPE@_sin(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
+{
+    if(IS_UNARY_CONT(@type@, @type@) &&
+           dimensions[0] > VML_TRANSCEDENTAL_THRESHOLD &&
+           DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@)) ) {
+        CHUNKED_VML_CALL2(v@c@Sin, dimensions[0], @type@, args[0], args[1]);
+        /* v@c@Sin(dimensions[0], (@type@*) args[0], (@type@*) args[1]); */
+    } else {
+        UNARY_LOOP_DISPATCH(
+            DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@))
+	    ,
+            const @type@ in1 = *(@type@ *)ip1;
+            *(@type@ *)op1 = @scalarf@(in1);
+	)
+    }
+}
+
+/**end repeat**/
+
+/**begin repeat
+ * Float types
+ *  #type = npy_float, npy_double#
+ *  #TYPE = FLOAT, DOUBLE#
+ *  #c = s, d#
+ *  #scalarf = npy_tanf, npy_tan#
+ */
+
+NPY_NO_EXPORT void
+@TYPE@_tan(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
+{
+    if(IS_UNARY_CONT(@type@, @type@) &&
+           dimensions[0] > VML_TRANSCEDENTAL_THRESHOLD &&
+           DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@)) ) {
+        CHUNKED_VML_CALL2(v@c@Tan, dimensions[0], @type@, args[0], args[1]);
+        /* v@c@Tan(dimensions[0], (@type@*) args[0], (@type@*) args[1]); */
+    } else {
+        UNARY_LOOP_DISPATCH(
+            DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@))
+	    ,
+            const @type@ in1 = *(@type@ *)ip1;
+            *(@type@ *)op1 = @scalarf@(in1);
+	)
+    }
+}
+
+/**end repeat**/
+
+/**begin repeat
+ * Float types
+ *  #type = npy_float, npy_double#
+ *  #TYPE = FLOAT, DOUBLE#
+ *  #c = s, d#
+ *  #scalarf = npy_acosf, npy_acos#
+ */
+
+NPY_NO_EXPORT void
+@TYPE@_arccos(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
+{
+    if(IS_UNARY_CONT(@type@, @type@) &&
+           dimensions[0] > VML_TRANSCEDENTAL_THRESHOLD &&
+           DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@)) ) {
+        CHUNKED_VML_CALL2(v@c@Acos, dimensions[0], @type@, args[0], args[1]);
+        /* v@c@Acos(dimensions[0], (@type@*) args[0], (@type@*) args[1]); */
+    } else {
+        UNARY_LOOP_DISPATCH(
+            DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@))
+	    ,
+            const @type@ in1 = *(@type@ *)ip1;
+            *(@type@ *)op1 = @scalarf@(in1);
+	)
+    }
+}
+
+/**end repeat**/
+
+/**begin repeat
+ * Float types
+ *  #type = npy_float, npy_double#
+ *  #TYPE = FLOAT, DOUBLE#
+ *  #c = s, d#
+ *  #scalarf = npy_asinf, npy_asin#
+ */
+
+NPY_NO_EXPORT void
+@TYPE@_arcsin(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
+{
+    if(IS_UNARY_CONT(@type@, @type@) &&
+           dimensions[0] > VML_TRANSCEDENTAL_THRESHOLD &&
+           DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@)) ) {
+        CHUNKED_VML_CALL2(v@c@Asin, dimensions[0], @type@, args[0], args[1]);
+        /* v@c@Asin(dimensions[0], (@type@*) args[0], (@type@*) args[1]); */
+    } else {
+        UNARY_LOOP_DISPATCH(
+            DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@))
+	    ,
+            const @type@ in1 = *(@type@ *)ip1;
+            *(@type@ *)op1 = @scalarf@(in1);
+	)
+    }
+}
+
+/**end repeat**/
+
+/**begin repeat
+ * Float types
+ *  #type = npy_float, npy_double#
+ *  #TYPE = FLOAT, DOUBLE#
+ *  #c = s, d#
+ *  #scalarf = npy_atanf, npy_atan#
+ */
+
+NPY_NO_EXPORT void
+@TYPE@_arctan(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
+{
+    if(IS_UNARY_CONT(@type@, @type@) &&
+           dimensions[0] > VML_TRANSCEDENTAL_THRESHOLD &&
+           DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@)) ) {
+        CHUNKED_VML_CALL2(v@c@Atan, dimensions[0], @type@, args[0], args[1]);
+        /* v@c@Atan(dimensions[0], (@type@*) args[0], (@type@*) args[1]); */
+    } else {
+        UNARY_LOOP_DISPATCH(
+            DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@))
+	    ,
+            const @type@ in1 = *(@type@ *)ip1;
+            *(@type@ *)op1 = @scalarf@(in1);
+	)
+    }
+}
+
+/**end repeat**/
+
+/**begin repeat
+ * Float types
+ *  #type = npy_float, npy_double#
+ *  #TYPE = FLOAT, DOUBLE#
+ *  #c = s, d#
+ *  #scalarf = npy_coshf, npy_cosh#
+ */
+
+NPY_NO_EXPORT void
+@TYPE@_cosh(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
+{
+    if(IS_UNARY_CONT(@type@, @type@) &&
+           dimensions[0] > VML_TRANSCEDENTAL_THRESHOLD &&
+           DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@)) ) {
+        CHUNKED_VML_CALL2(v@c@Cosh, dimensions[0], @type@, args[0], args[1]);
+        /* v@c@Cosh(dimensions[0], (@type@*) args[0], (@type@*) args[1]); */
+    } else {
+        UNARY_LOOP_DISPATCH(
+            DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@))
+	    ,
+            const @type@ in1 = *(@type@ *)ip1;
+            *(@type@ *)op1 = @scalarf@(in1);
+	)
+    }
+}
+
+/**end repeat**/
+
+/**begin repeat
+ * Float types
+ *  #type = npy_float, npy_double#
+ *  #TYPE = FLOAT, DOUBLE#
+ *  #c = s, d#
+ *  #scalarf = npy_sinhf, npy_sinh#
+ */
+
+NPY_NO_EXPORT void
+@TYPE@_sinh(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
+{
+    if(IS_UNARY_CONT(@type@, @type@) &&
+           dimensions[0] > VML_TRANSCEDENTAL_THRESHOLD &&
+           DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@)) ) {
+        CHUNKED_VML_CALL2(v@c@Sinh, dimensions[0], @type@, args[0], args[1]);
+        /* v@c@Sinh(dimensions[0], (@type@*) args[0], (@type@*) args[1]); */
+    } else {
+        UNARY_LOOP_DISPATCH(
+            DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@))
+	    ,
+            const @type@ in1 = *(@type@ *)ip1;
+            *(@type@ *)op1 = @scalarf@(in1);
+	)
+    }
+}
+
+/**end repeat**/
+
+/**begin repeat
+ * Float types
+ *  #type = npy_float, npy_double#
+ *  #TYPE = FLOAT, DOUBLE#
+ *  #c = s, d#
+ *  #scalarf = npy_tanhf, npy_tanh#
+ */
+
+NPY_NO_EXPORT void
+@TYPE@_tanh(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
+{
+    if(IS_UNARY_CONT(@type@, @type@) &&
+           dimensions[0] > VML_TRANSCEDENTAL_THRESHOLD &&
+           DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@)) ) {
+        CHUNKED_VML_CALL2(v@c@Tanh, dimensions[0], @type@, args[0], args[1]);
+        /* v@c@Tanh(dimensions[0], (@type@*) args[0], (@type@*) args[1]); */
+    } else {
+        UNARY_LOOP_DISPATCH(
+            DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@))
+	    ,
+            const @type@ in1 = *(@type@ *)ip1;
+            *(@type@ *)op1 = @scalarf@(in1);
+	)
+    }
+}
+
+/**end repeat**/
+
+/**begin repeat
+ * Float types
+ *  #type = npy_float, npy_double#
+ *  #TYPE = FLOAT, DOUBLE#
+ *  #c = s, d#
+ *  #scalarf = npy_acoshf, npy_acosh#
+ */
+
+NPY_NO_EXPORT void
+@TYPE@_arccosh(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
+{
+    if(IS_UNARY_CONT(@type@, @type@) &&
+           dimensions[0] > VML_TRANSCEDENTAL_THRESHOLD &&
+           DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@)) ) {
+        CHUNKED_VML_CALL2(v@c@Acosh, dimensions[0], @type@, args[0], args[1]);
+        /* v@c@Acosh(dimensions[0], (@type@*) args[0], (@type@*) args[1]); */
+    } else {
+        UNARY_LOOP_DISPATCH(
+            DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@))
+	    ,
+            const @type@ in1 = *(@type@ *)ip1;
+            *(@type@ *)op1 = @scalarf@(in1);
+	)
+    }
+}
+
+/**end repeat**/
+
+/**begin repeat
+ * Float types
+ *  #type = npy_float, npy_double#
+ *  #TYPE = FLOAT, DOUBLE#
+ *  #c = s, d#
+ *  #scalarf = npy_asinhf, npy_asinh#
+ */
+
+NPY_NO_EXPORT void
+@TYPE@_arcsinh(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
+{
+    if(IS_UNARY_CONT(@type@, @type@) &&
+           dimensions[0] > VML_TRANSCEDENTAL_THRESHOLD &&
+           DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@)) ) {
+        CHUNKED_VML_CALL2(v@c@Asinh, dimensions[0], @type@, args[0], args[1]);
+        /* v@c@Asinh(dimensions[0], (@type@*) args[0], (@type@*) args[1]); */
+    } else {
+        UNARY_LOOP_DISPATCH(
+            DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@))
+	    ,
+            const @type@ in1 = *(@type@ *)ip1;
+            *(@type@ *)op1 = @scalarf@(in1);
+	)
+    }
+}
+
+/**end repeat**/
+
+/**begin repeat
+ * Float types
+ *  #type = npy_float, npy_double#
+ *  #TYPE = FLOAT, DOUBLE#
+ *  #c = s, d#
+ *  #scalarf = npy_atanhf, npy_atanh#
+ */
+
+NPY_NO_EXPORT void
+@TYPE@_arctanh(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
+{
+    if(IS_UNARY_CONT(@type@, @type@) &&
+           dimensions[0] > VML_TRANSCEDENTAL_THRESHOLD &&
+           DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@)) ) {
+        CHUNKED_VML_CALL2(v@c@Atanh, dimensions[0], @type@, args[0], args[1]);
+        /* v@c@Atanh(dimensions[0], (@type@*) args[0], (@type@*) args[1]); */
+    } else {
+        UNARY_LOOP_DISPATCH(
+            DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@))
+	    ,
+            const @type@ in1 = *(@type@ *)ip1;
+            *(@type@ *)op1 = @scalarf@(in1);
+	)
+    }
+}
+
+/**end repeat**/
+
+/**begin repeat
+ * Float types
+ *  #type = npy_float, npy_double#
+ *  #TYPE = FLOAT, DOUBLE#
+ *  #c = s, d#
+ *  #scalarf = npy_fabsf, npy_fabs#
+ */
+
+NPY_NO_EXPORT void
+@TYPE@_fabs(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
+{
+    UNARY_LOOP_DISPATCH(
+        DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@))
+        ,
+        const @type@ in1 = *(@type@ *)ip1;
+        *(@type@ *)op1 = @scalarf@(in1);
+    )
+}
+
+/**end repeat**/
+
+/**begin repeat
+ * Float types
+ *  #type = npy_float, npy_double#
+ *  #TYPE = FLOAT, DOUBLE#
+ *  #c = s, d#
+ *  #scalarf = npy_floorf, npy_floor#
+ */
+
+NPY_NO_EXPORT void
+@TYPE@_floor(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
+{
+    if(steps[0] == sizeof(@type@) && steps[1] == sizeof(@type@) &&
+           dimensions[0] > VML_TRANSCEDENTAL_THRESHOLD &&
+           DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@)) ) {
+        CHUNKED_VML_CALL2(v@c@Floor, dimensions[0], @type@, args[0], args[1]);
+        /* v@c@Floor(dimensions[0], (@type@*) args[0], (@type@*) args[1]); */
+    } else {
+        UNARY_LOOP_DISPATCH(
+            DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@))
+	    ,
+            const @type@ in1 = *(@type@ *)ip1;
+            *(@type@ *)op1 = @scalarf@(in1);
+	)
+    }
+}
+
+/**end repeat**/
+
+/**begin repeat
+ * Float types
+ *  #type = npy_float, npy_double#
+ *  #TYPE = FLOAT, DOUBLE#
+ *  #c = s, d#
+ *  #scalarf = npy_ceilf, npy_ceil#
+ */
+
+NPY_NO_EXPORT void
+@TYPE@_ceil(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
+{
+    if(IS_UNARY_CONT(@type@, @type@) &&
+           dimensions[0] > VML_TRANSCEDENTAL_THRESHOLD &&
+           DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@)) ) {
+        CHUNKED_VML_CALL2(v@c@Ceil, dimensions[0], @type@, args[0], args[1]);
+        /* v@c@Ceil(dimensions[0], (@type@*) args[0], (@type@*) args[1]); */
+    } else {
+        UNARY_LOOP_DISPATCH(
+            DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@))
+	    ,
+            const @type@ in1 = *(@type@ *)ip1;
+            *(@type@ *)op1 = @scalarf@(in1);
+	)
+    }
+}
+
+/**end repeat**/
+
+/**begin repeat
+ * Float types
+ *  #type = npy_float, npy_double#
+ *  #TYPE = FLOAT, DOUBLE#
+ *  #c = s, d#
+ *  #scalarf = npy_rintf, npy_rint#
+ */
+
+NPY_NO_EXPORT void
+@TYPE@_rint(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
+{
+    if(steps[0] == sizeof(@type@) && steps[1] == sizeof(@type@) &&
+           dimensions[0] > VML_TRANSCEDENTAL_THRESHOLD &&
+           DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@)) ) {
+        CHUNKED_VML_CALL2(v@c@Rint, dimensions[0], @type@, args[0], args[1]);
+        /* v@c@Rint(dimensions[0], (@type@*) args[0], (@type@*) args[1]); */
+    } else {
+        UNARY_LOOP_DISPATCH(
+            DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@))
+	    ,
+            const @type@ in1 = *(@type@ *)ip1;
+            *(@type@ *)op1 = @scalarf@(in1);
+	)
+    }
+}
+
+/**end repeat**/
+
+/**begin repeat
+ * Float types
+ *  #type = npy_float, npy_double#
+ *  #TYPE = FLOAT, DOUBLE#
+ *  #c = s, d#
+ *  #scalarf = npy_truncf, npy_trunc#
+ */
+
+NPY_NO_EXPORT void
+@TYPE@_trunc(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
+{
+    if(IS_UNARY_CONT(@type@, @type@) &&
+           dimensions[0] > VML_TRANSCEDENTAL_THRESHOLD &&
+           DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@)) ) {
+        CHUNKED_VML_CALL2(v@c@Trunc, dimensions[0], @type@, args[0], args[1]);
+        /* v@c@Trunc(dimensions[0], (@type@*) args[0], (@type@*) args[1]); */
+    } else {
+        UNARY_LOOP_DISPATCH(
+            DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@))
+	    ,
+            const @type@ in1 = *(@type@ *)ip1;
+            *(@type@ *)op1 = @scalarf@(in1);
+	)
+    }
+}
+
+/**end repeat**/
+
+/**begin repeat
+ * Float types
+ *  #type = npy_float, npy_double#
+ *  #TYPE = FLOAT, DOUBLE#
+ *  #c = s, d#
+ *  #scalarf = npy_cbrtf, npy_cbrt#
+ */
+
+NPY_NO_EXPORT void
+@TYPE@_cbrt(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
+{
+    if(IS_UNARY_CONT(@type@, @type@) &&
+           dimensions[0] > VML_TRANSCEDENTAL_THRESHOLD &&
+           DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@)) ) {
+        CHUNKED_VML_CALL2(v@c@Cbrt, dimensions[0], @type@, args[0], args[1]);
+        /* v@c@Cbrt(dimensions[0], (@type@*) args[0], (@type@*) args[1]); */
+    } else {
+        UNARY_LOOP_DISPATCH(
+            DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@))
+	    ,
+            const @type@ in1 = *(@type@ *)ip1;
+            *(@type@ *)op1 = @scalarf@(in1);
+	)
+    }
+}
+
+/**end repeat**/
+
+/**begin repeat
+ * Float types
+ *  #type = npy_float, npy_double, npy_longdouble, npy_float#
+ *  #dtype = npy_float, npy_double, npy_longdouble, npy_half#
+ *  #TYPE = FLOAT, DOUBLE, LONGDOUBLE, HALF#
+ *  #c = f, , l, #
+ *  #C = F, , L, #
+ *  #trf = , , , npy_half_to_float#
+ */
+
+/*
+ * Pairwise summation, rounding error O(lg n) instead of O(n).
+ * The recursion depth is O(lg n) as well.
+ * when updating also update similar complex floats summation
+ */
+#if defined(__ICC) || defined(__INTEL_COMPILER)
+#ifdef _MSC_VER
+#pragma intel optimization_level 1
+#else
+#pragma intel optimization_level 2
+#endif
+#endif
+static @type@
+pairwise_sum_@TYPE@(char *a, npy_intp n, npy_intp stride)
+{
+    if (n < 8) {
+        npy_intp i;
+        @type@ res = 0.;
+
+        for (i = 0; i < n; i++) {
+            res += @trf@(*((@dtype@*)(a + i * stride)));
+        }
+        return res;
+    }
+    else if (n <= PW_BLOCKSIZE) {
+        npy_intp i;
+        @type@ r[8], res;
+
+        /*
+         * sum a block with 8 accumulators
+         * 8 times unroll reduces blocksize to 16 and allows vectorization with
+         * avx without changing summation ordering
+         */
+        r[0] = @trf@(*((@dtype@ *)(a + 0 * stride)));
+        r[1] = @trf@(*((@dtype@ *)(a + 1 * stride)));
+        r[2] = @trf@(*((@dtype@ *)(a + 2 * stride)));
+        r[3] = @trf@(*((@dtype@ *)(a + 3 * stride)));
+        r[4] = @trf@(*((@dtype@ *)(a + 4 * stride)));
+        r[5] = @trf@(*((@dtype@ *)(a + 5 * stride)));
+        r[6] = @trf@(*((@dtype@ *)(a + 6 * stride)));
+        r[7] = @trf@(*((@dtype@ *)(a + 7 * stride)));
+
+        for (i = 8; i < n - (n % 8); i += 8) {
+            /* small blocksizes seems to mess with hardware prefetch */
+            NPY_PREFETCH(a + (i + 512/(npy_intp)sizeof(@dtype@))*stride, 0, 3);
+            r[0] += @trf@(*((@dtype@ *)(a + (i + 0) * stride)));
+            r[1] += @trf@(*((@dtype@ *)(a + (i + 1) * stride)));
+            r[2] += @trf@(*((@dtype@ *)(a + (i + 2) * stride)));
+            r[3] += @trf@(*((@dtype@ *)(a + (i + 3) * stride)));
+            r[4] += @trf@(*((@dtype@ *)(a + (i + 4) * stride)));
+            r[5] += @trf@(*((@dtype@ *)(a + (i + 5) * stride)));
+            r[6] += @trf@(*((@dtype@ *)(a + (i + 6) * stride)));
+            r[7] += @trf@(*((@dtype@ *)(a + (i + 7) * stride)));
+        }
+
+        /* accumulate now to avoid stack spills for single peel loop */
+        res = ((r[0] + r[1]) + (r[2] + r[3])) +
+              ((r[4] + r[5]) + (r[6] + r[7]));
+
+        /* do non multiple of 8 rest */
+        for (; i < n; i++) {
+            res += @trf@(*((@dtype@ *)(a + i * stride)));
+        }
+        return res;
+    }
+    else {
+        /* divide by two but avoid non-multiples of unroll factor */
+        npy_intp n2 = n / 2;
+
+        n2 -= n2 % 8;
+        return pairwise_sum_@TYPE@(a, n2, stride) +
+               pairwise_sum_@TYPE@(a + n2 * stride, n - n2, stride);
+    }
+}
+
+/**end repeat**/
+
+/**begin repeat
+ * Float types
+ *  #type = npy_float, npy_double, npy_longdouble#
+ *  #TYPE = FLOAT, DOUBLE, LONGDOUBLE#
+ *  #c = f, , l#
+ *  #C = F, , L#
+ *  #s = s, d, d#
+ *  #SUPPORTED_BY_VML = 1, 1, 0#
+ */
+
+/**begin repeat1
+ * Arithmetic
+ * # kind = add#
+ * # OP = +#
+ * # PW = 1#
+ * # VML = Add#
+ */
+NPY_NO_EXPORT void
+@TYPE@_@kind@(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
+{
+    if(IS_BINARY_CONT(@type@, @type@)) {
+#if @SUPPORTED_BY_VML@
+        if(dimensions[0] > VML_ASM_THRESHOLD &&
+                DISJOINT_OR_SAME(args[0], args[2], dimensions[0], sizeof(@type@)) &&
+                DISJOINT_OR_SAME(args[1], args[2], dimensions[0], sizeof(@type@)) ) {
+            CHUNKED_VML_CALL3(v@s@@VML@, dimensions[0], @type@, args[0], args[1], args[2]);
+            /* v@s@@VML@(dimensions[0], (@type@*) args[0], (@type@*) args[1], (@type@*) args[2]); */
+        } else
+#endif
+        {
+            @type@ *ip1 = (@type@*)args[0];
+            @type@ *ip2 = (@type@*)args[1];
+            @type@ *op1 = (@type@*)args[2];
+            const npy_intp vsize = 64;
+            const npy_intp n = dimensions[0];
+            const npy_intp peel = npy_aligned_block_offset(ip1, sizeof(@type@), vsize, n);
+            const npy_intp blocked_end = npy_blocked_end(peel, sizeof(@type@), vsize, n);
+            npy_intp i;
+
+            for(i = 0; i < peel; i++) {
+                op1[i] = ip1[i] @OP@ ip2[i];
+            }
+
+            {
+                npy_intp j, j_max = blocked_end - peel;
+                if (j_max > 0) {
+                    @type@ *ip1_aligned = ip1 + peel;
+                    @type@ *op1_shifted = op1 + peel;
+                    @type@ *ip2_shifted = ip2 + peel;
+
+		    if( DISJOINT_OR_SAME(op1_shifted, ip1_aligned, j_max, 1) &&
+			DISJOINT_OR_SAME(op1_shifted, ip2_shifted, j_max, 1) ) {
+			__assume_aligned(ip1_aligned, 64);
+			_Pragma("vector");
+			for(j = 0; j < j_max; j++) {
+			    op1_shifted[j] = ip1_aligned[j] @OP@ ip2_shifted[j];
+			}
+		    } else {
+			__assume_aligned(ip1_aligned, 64);
+			for(j = 0; j < j_max; j++) {
+			    op1_shifted[j] = ip1_aligned[j] @OP@ ip2_shifted[j];
+			}
+		    }
+
+                    i = blocked_end;
+                }
+            }
+
+            for(; i < n; i++) {
+                op1[i] = ip1[i] @OP@ ip2[i];
+            }
+        }
+    } else if(IS_BINARY_CONT_S1(@type@, @type@)) {
+#if @SUPPORTED_BY_VML@
+        if(dimensions[0] > VML_ASM_THRESHOLD &&
+               DISJOINT_OR_SAME(args[1], args[2], dimensions[0], sizeof(@type@)) ) {
+            CHUNKED_VML_LINEARFRAC_CALL(v@s@LinearFrac, dimensions[0], @type@, args[1], args[2], 1.0, *(@type@*)args[0], 0.0, 1.0);
+            /* v@s@LinearFrac(dimensions[0], (@type@*) args[1], (@type@*) args[1], 1.0, *(@type@*)args[0], 0.0, 1.0, (@type@*) args[2]); */
+        } else
+#endif
+        {
+            @type@ *ip1 = (@type@*)args[0];
+            @type@ *ip2 = (@type@*)args[1];
+            @type@ *op1 = (@type@*)args[2];
+            const npy_intp vsize = 64;
+            const npy_intp n = dimensions[0];
+            const npy_intp peel = npy_aligned_block_offset(ip2, sizeof(@type@), vsize, n);
+            const npy_intp blocked_end = npy_blocked_end(peel, sizeof(@type@), vsize, n);
+            npy_intp i;
+
+            const @type@ ip1c = ip1[0];
+            for(i = 0; i < peel; i++) {
+                op1[i] = ip1c @OP@ ip2[i];
+            }
+
+            {
+                npy_intp j, j_max = blocked_end - peel;
+                if (j_max > 0) {
+                    @type@ *ip2_aligned = ip2 + peel;
+                    @type@ *op1_shifted = op1 + peel;
+
+                    __assume_aligned(ip2_aligned, 64);
+                    for(j = 0; j < j_max; j++) {
+                        op1_shifted[j] = ip1c @OP@ ip2_aligned[j];
+                    }
+
+                    i = blocked_end;
+                }
+            }
+
+            for(; i < n; i++) {
+                op1[i] = ip1c @OP@ ip2[i];
+            }
+        }
+    } else if(IS_BINARY_CONT_S2(@type@, @type@)) {
+#if @SUPPORTED_BY_VML@
+        if(dimensions[0] > VML_ASM_THRESHOLD &&
+               DISJOINT_OR_SAME(args[0], args[2], dimensions[0], sizeof(@type@)) ) {
+            CHUNKED_VML_LINEARFRAC_CALL(v@s@LinearFrac, dimensions[0], @type@, args[0], args[2], 1.0, *(@type@*)args[1], 0.0, 1.0);
+            /* v@s@LinearFrac(dimensions[0], (@type@*) args[0], (@type@*) args[0], 1.0, *(@type@*)args[1], 0.0, 1.0, (@type@*) args[2]); */
+        } else
+#endif
+        {
+            @type@ *ip1 = (@type@*)args[0];
+            @type@ *ip2 = (@type@*)args[1];
+            @type@ *op1 = (@type@*)args[2];
+            const npy_intp vsize = 64;
+            const npy_intp n = dimensions[0];
+            const npy_intp peel = npy_aligned_block_offset(ip1, sizeof(@type@), vsize, n);
+            const npy_intp blocked_end = npy_blocked_end(peel, sizeof(@type@), vsize, n);
+            npy_intp i;
+
+            const @type@ ip2c = ip2[0];
+            for(i = 0; i < peel; i++) {
+                op1[i] = ip1[i] @OP@ ip2c;
+            }
+
+            if (blocked_end > peel) {
+                npy_intp j, j_max = blocked_end - peel;
+                if (j_max > 0) {
+                    @type@ *op1_shifted = op1 + peel;
+                    @type@ *ip1_aligned = ip1 + peel;
+
+                    __assume_aligned(ip1_aligned, 64);
+                    for(j = 0; j < j_max; j++) {
+                        op1_shifted[j] = ip1_aligned[j] @OP@ ip2c;
+                    }
+
+                    i = blocked_end;
+                }
+            }
+
+            for(; i < n; i++) {
+                op1[i] = ip1[i] @OP@ ip2c;
+            }
+        }
+    } else if (IS_BINARY_REDUCE) {
+#if @PW@
+        @type@ * iop1 = (@type@ *)args[0];
+        npy_intp n = dimensions[0];
+
+        *iop1 @OP@= pairwise_sum_@TYPE@(args[1], n, steps[1]);
+#else
+        BINARY_REDUCE_LOOP(@type@) {
+            io1 @OP@= *(@type@ *)ip2;
+        }
+        *((@type@ *)iop1) = io1;
+#endif
+    } else if (!run_binary_simd_@kind@_@TYPE@(args, dimensions, steps)) {
+        BINARY_LOOP {
+            const @type@ in1 = *(@type@ *)ip1;
+            const @type@ in2 = *(@type@ *)ip2;
+            *((@type@ *)op1) = in1 @OP@ in2;
+        }
+    }
+}
+/**end repeat1**/
+
+/**begin repeat1
+ * Arithmetic
+ * # kind = subtract#
+ * # OP = -#
+ * # PW = 0#
+ * # VML = Sub#
+ */
+NPY_NO_EXPORT void
+@TYPE@_@kind@(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
+{
+    if(IS_BINARY_CONT(@type@, @type@)) {
+#if @SUPPORTED_BY_VML@
+        if(dimensions[0] > VML_ASM_THRESHOLD &&
+               DISJOINT_OR_SAME(args[0], args[2], dimensions[0], sizeof(@type@)) &&
+               DISJOINT_OR_SAME(args[1], args[2], dimensions[0], sizeof(@type@)) ) {
+            CHUNKED_VML_CALL3(v@s@@VML@, dimensions[0], @type@, args[0], args[1], args[2]);
+            /* v@s@@VML@(dimensions[0], (@type@*) args[0], (@type@*) args[1], (@type@*) args[2]); */
+        } else
+#endif
+        {
+            @type@ *ip1 = (@type@*)args[0];
+            @type@ *ip2 = (@type@*)args[1];
+            @type@ *op1 = (@type@*)args[2];
+            const npy_intp vsize = 64;
+            const npy_intp n = dimensions[0];
+            const npy_intp peel = npy_aligned_block_offset(ip1, sizeof(@type@), vsize, n);
+            const npy_intp blocked_end = npy_blocked_end(peel, sizeof(@type@), vsize, n);
+            npy_intp i;
+
+            for(i = 0; i < peel; i++) {
+                op1[i] = ip1[i] @OP@ ip2[i];
+            }
+
+            {
+                npy_intp j, j_max = blocked_end - peel;
+                if (j_max > 0) {
+                    @type@ *ip1_aligned = ip1 + peel;
+                    @type@ *ip2_shifted = ip2 + peel;
+                    @type@ *op1_shifted = op1 + peel;
+
+		    if( DISJOINT_OR_SAME(op1_shifted, ip1_aligned, j_max, 1) &&
+			DISJOINT_OR_SAME(op1_shifted, ip2_shifted, j_max, 1) ) {
+			__assume_aligned(ip1_aligned, 64);
+			_Pragma("vector");
+			for(j = 0; j < j_max; j++) {
+			    op1_shifted[j] = ip1_aligned[j] @OP@ ip2_shifted[j];
+			}
+		    } else {
+			__assume_aligned(ip1_aligned, 64);
+			for(j = 0; j < j_max; j++) {
+			    op1_shifted[j] = ip1_aligned[j] @OP@ ip2_shifted[j];
+			}
+		    }
+
+                    i = blocked_end;
+                }
+            }
+
+            for(; i < n; i++) {
+                op1[i] = ip1[i] @OP@ ip2[i];
+            }
+        }
+    } else if(IS_BINARY_CONT_S1(@type@, @type@)) {
+#if @SUPPORTED_BY_VML@
+        if(dimensions[0] > VML_ASM_THRESHOLD &&
+               DISJOINT_OR_SAME(args[1], args[2], dimensions[0], sizeof(@type@))) {
+            CHUNKED_VML_LINEARFRAC_CALL(v@s@LinearFrac, dimensions[0], @type@, args[1], args[2], -1.0, *(@type@*)args[0], 0.0, 1.0);
+            /* v@s@LinearFrac(dimensions[0], (@type@*) args[1], (@type@*) args[1], -1.0, *(@type@*)args[0], 0.0, 1.0, (@type@*) args[2]); */
+        } else
+#endif
+        {
+            @type@ *ip1 = (@type@*)args[0];
+            @type@ *ip2 = (@type@*)args[1];
+            @type@ *op1 = (@type@*)args[2];
+            const npy_intp vsize = 64;
+            const npy_intp n = dimensions[0];
+            const npy_intp peel = npy_aligned_block_offset(ip2, sizeof(@type@), vsize, n);
+            const npy_intp blocked_end = npy_blocked_end(peel, sizeof(@type@), vsize, n);
+            npy_intp i;
+
+            const @type@ ip1c = ip1[0];
+            for(i = 0; i < peel; i++) {
+                op1[i] = ip1c @OP@ ip2[i];
+            }
+
+            {
+                npy_intp j, j_max = blocked_end - peel;
+                if (j_max > 0) {
+                    @type@ *ip2_aligned = ip2 + peel;
+                    @type@ *op1_shifted = op1 + peel;
+
+                    __assume_aligned(ip2_aligned, 64);
+                    for(j = 0; j < j_max; j++) {
+                        op1_shifted[j] = ip1c @OP@ ip2_aligned[j];
+                    }
+
+                    i = blocked_end;
+                }
+            }
+
+            for(; i < n; i++) {
+                op1[i] = ip1c @OP@ ip2[i];
+            }
+        }
+    } else if(IS_BINARY_CONT_S2(@type@, @type@)) {
+#if @SUPPORTED_BY_VML@
+        if(dimensions[0] > VML_ASM_THRESHOLD &&
+               DISJOINT_OR_SAME(args[0], args[2], dimensions[0], sizeof(@type@)) ) {
+            CHUNKED_VML_LINEARFRAC_CALL(v@s@LinearFrac, dimensions[0], @type@, args[0], args[2], 1.0, -(*(@type@*)args[1]), 0.0, 1.0);
+            /* v@s@LinearFrac(dimensions[0], (@type@*) args[0], (@type@*) args[0], 1.0, -*(@type@*)args[1], 0.0, 1.0, (@type@*) args[2]); */
+        } else
+#endif
+        {
+            @type@ *ip1 = (@type@*)args[0];
+            @type@ *ip2 = (@type@*)args[1];
+            @type@ *op1 = (@type@*)args[2];
+            const npy_intp vsize = 64;
+            const npy_intp n = dimensions[0];
+            const npy_intp peel = npy_aligned_block_offset(ip1, sizeof(@type@), vsize, n);
+            const npy_intp blocked_end = npy_blocked_end(peel, sizeof(@type@), vsize, n);
+            npy_intp i;
+
+            const @type@ ip2c = ip2[0];
+            for(i = 0; i < peel; i++) {
+                op1[i] = ip1[i] @OP@ ip2c;
+            }
+
+            {
+                npy_intp j, j_max = blocked_end - peel;
+                if (j_max > 0) {
+                    @type@ *op1_shifted = op1 + peel;
+                    @type@ *ip1_aligned = ip1 + peel;
+
+                    __assume_aligned(ip1_aligned, 64);
+                    for(j = 0; j < j_max; j++) {
+                        op1_shifted[j] = ip1_aligned[j] @OP@ ip2c;
+                    }
+
+                    i = blocked_end;
+                }
+            }
+
+            for(; i < n; i++) {
+                op1[i] = ip1[i] @OP@ ip2c;
+            }
+        }
+    } else if (IS_BINARY_REDUCE) {
+#if @PW@
+        @type@ * iop1 = (@type@ *)args[0];
+        npy_intp n = dimensions[0];
+
+        *iop1 @OP@= pairwise_sum_@TYPE@(args[1], n, steps[1]);
+#else
+        BINARY_REDUCE_LOOP(@type@) {
+            io1 @OP@= *(@type@ *)ip2;
+        }
+        *((@type@ *)iop1) = io1;
+#endif
+    } else if (!run_binary_simd_@kind@_@TYPE@(args, dimensions, steps)) {
+        BINARY_LOOP {
+            const @type@ in1 = *(@type@ *)ip1;
+            const @type@ in2 = *(@type@ *)ip2;
+            *((@type@ *)op1) = in1 @OP@ in2;
+        }
+    }
+}
+/**end repeat1**/
+
+/**begin repeat1
+ * Arithmetic
+ * # kind = multiply#
+ * # OP = *#
+ * # PW = 0#
+ * # VML = Mul#
+ */
+NPY_NO_EXPORT void
+@TYPE@_@kind@(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
+{
+    if(IS_BINARY_CONT(@type@, @type@)) {
+#if @SUPPORTED_BY_VML@
+        if(dimensions[0] > VML_ASM_THRESHOLD &&
+               DISJOINT_OR_SAME(args[0], args[2], dimensions[0], sizeof(@type@)) &&
+               DISJOINT_OR_SAME(args[1], args[2], dimensions[0], sizeof(@type@)) ) {
+            CHUNKED_VML_CALL3(v@s@@VML@, dimensions[0], @type@, args[0], args[1], args[2]);
+            /* v@s@@VML@(dimensions[0], (@type@*) args[0], (@type@*) args[1], (@type@*) args[2]); */
+        } else
+#endif
+        {
+            @type@ *ip1 = (@type@*)args[0];
+            @type@ *ip2 = (@type@*)args[1];
+            @type@ *op1 = (@type@*)args[2];
+            const npy_intp vsize = 64;
+            const npy_intp n = dimensions[0];
+            const npy_intp peel = npy_aligned_block_offset(ip1, sizeof(@type@), vsize, n);
+            const npy_intp blocked_end = npy_blocked_end(peel, sizeof(@type@), vsize, n);
+            npy_intp i;
+
+            for(i = 0; i < peel; i++) {
+                op1[i] = ip1[i] @OP@ ip2[i];
+            }
+
+            {
+                npy_intp j, j_max = blocked_end - peel;
+                if (j_max > 0) {
+                    @type@ *ip1_aligned = ip1 + peel;
+                    @type@ *ip2_shifted = ip2 + peel;
+                    @type@ *op1_shifted = op1 + peel;
+
+		    if( DISJOINT_OR_SAME(op1_shifted, ip1_aligned, j_max, 1) &&
+			DISJOINT_OR_SAME(op1_shifted, ip2_shifted, j_max, 1) ) {
+			__assume_aligned(ip1_aligned, 64);
+			_Pragma("vector");
+			for(j = 0; j < j_max; j++) {
+			    op1_shifted[j] = ip1_aligned[j] @OP@ ip2_shifted[j];
+			}
+		    } else {
+			__assume_aligned(ip1_aligned, 64);
+			for(j = 0; j < j_max; j++) {
+			    op1_shifted[j] = ip1_aligned[j] @OP@ ip2_shifted[j];
+			}
+		    }
+
+                    i = blocked_end;
+                }
+            }
+
+            for(; i < n; i++) {
+                op1[i] = ip1[i] @OP@ ip2[i];
+            }
+        }
+    } else if(IS_BINARY_CONT_S1(@type@, @type@)) {
+#if @SUPPORTED_BY_VML@
+        if(dimensions[0] > VML_ASM_THRESHOLD &&
+               DISJOINT_OR_SAME(args[1], args[2], dimensions[0], sizeof(@type@)) ) {
+            CHUNKED_VML_LINEARFRAC_CALL(v@s@LinearFrac, dimensions[0], @type@, args[1], args[2], *(@type@*)args[0], 0.0, 0.0, 1.0);
+            /* v@s@LinearFrac(dimensions[0], (@type@*) args[1], (@type@*) args[1], *(@type@*)args[0], 0.0, 0.0, 1.0, (@type@*) args[2]); */
+        } else
+#endif
+        {
+            @type@ *ip1 = (@type@*)args[0];
+            @type@ *ip2 = (@type@*)args[1];
+            @type@ *op1 = (@type@*)args[2];
+            const npy_intp vsize = 64;
+            const npy_intp n = dimensions[0];
+            const npy_intp peel = npy_aligned_block_offset(ip2, sizeof(@type@), vsize, n);
+            const npy_intp blocked_end = npy_blocked_end(peel, sizeof(@type@), vsize, n);
+            npy_intp i;
+
+            const @type@ ip1c = ip1[0];
+            for(i = 0; i < peel; i++) {
+                op1[i] = ip1c @OP@ ip2[i];
+            }
+
+            {
+                npy_intp j, j_max = blocked_end - peel;
+                if (j_max > 0) {
+                    @type@ *ip2_aligned = ip2 + peel;
+                    @type@ *op1_shifted = op1 + peel;
+
+                    __assume_aligned(ip2_aligned, 64);
+                    for(j = 0; j < j_max; j++) {
+                        op1_shifted[j] = ip1c @OP@ ip2_aligned[j];
+                    }
+
+                    i = blocked_end;
+                }
+            }
+
+            for(; i < n; i++) {
+                op1[i] = ip1c @OP@ ip2[i];
+            }
+        }
+    } else if(IS_BINARY_CONT_S2(@type@, @type@)) {
+#if @SUPPORTED_BY_VML@
+        if(dimensions[0] > VML_ASM_THRESHOLD &&
+               DISJOINT_OR_SAME(args[0], args[2], dimensions[0], sizeof(@type@)) ) {
+            CHUNKED_VML_LINEARFRAC_CALL(v@s@LinearFrac, dimensions[0], @type@, args[0], args[2], *(@type@*)args[1], 0.0, 0.0, 1.0);
+            /* v@s@LinearFrac(dimensions[0], (@type@*) args[0], (@type@*) args[0], *(@type@*)args[1], 0.0, 0.0, 1.0, (@type@*) args[2]); */
+        } else
+#endif
+        {
+            @type@ *ip1 = (@type@*)args[0];
+            @type@ *ip2 = (@type@*)args[1];
+            @type@ *op1 = (@type@*)args[2];
+            const npy_intp vsize = 64;
+            const npy_intp n = dimensions[0];
+            const npy_intp peel = npy_aligned_block_offset(ip1, sizeof(@type@), vsize, n);
+            const npy_intp blocked_end = npy_blocked_end(peel, sizeof(@type@), vsize, n);
+            npy_intp i;
+
+            const @type@ ip2c = ip2[0];
+            for(i = 0; i < peel; i++) {
+                op1[i] = ip1[i] @OP@ ip2c;
+            }
+
+            {
+                npy_intp j, j_max = blocked_end - peel;
+                if (j_max > 0) {
+                    @type@ *op1_shifted = op1 + peel;
+                    @type@ *ip1_aligned = ip1 + peel;
+
+                    __assume_aligned(ip1_aligned, 64);
+                    for(j = 0; j < j_max; j++) {
+                        op1_shifted[j] = ip1_aligned[j] @OP@ ip2c;
+                    }
+
+                    i = blocked_end;
+                }
+            }
+
+            for(; i < n; i++) {
+                op1[i] = ip1[i] @OP@ ip2c;
+            }
+        }
+    } else if (IS_BINARY_REDUCE) {
+#if @PW@
+        @type@ * iop1 = (@type@ *)args[0];
+        npy_intp n = dimensions[0];
+
+        *iop1 @OP@= pairwise_sum_@TYPE@(args[1], n, steps[1]);
+#else
+        BINARY_REDUCE_LOOP(@type@) {
+            io1 @OP@= *(@type@ *)ip2;
+        }
+        *((@type@ *)iop1) = io1;
+#endif
+    } else if (!run_binary_simd_@kind@_@TYPE@(args, dimensions, steps)) {
+        BINARY_LOOP {
+            const @type@ in1 = *(@type@ *)ip1;
+            const @type@ in2 = *(@type@ *)ip2;
+            *((@type@ *)op1) = in1 @OP@ in2;
+        }
+    }
+}
+/**end repeat1**/
+
+/**begin repeat1
+ * Arithmetic
+ * # kind = divide#
+ * # OP = /#
+ * # PW = 0#
+ * # VML = Div#
+ */
+NPY_NO_EXPORT void
+@TYPE@_@kind@(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
+{
+    if(IS_BINARY_CONT(@type@, @type@)) {
+#if @SUPPORTED_BY_VML@
+        if(dimensions[0] > VML_D_THRESHOLD &&
+               DISJOINT_OR_SAME(args[0], args[2], dimensions[0], sizeof(@type@)) &&
+               DISJOINT_OR_SAME(args[1], args[2], dimensions[0], sizeof(@type@)) ) {
+            CHUNKED_VML_CALL3(v@s@@VML@, dimensions[0], @type@, args[0], args[1], args[2]);
+            /* v@s@@VML@(dimensions[0], (@type@*) args[0], (@type@*) args[1], (@type@*) args[2]); */
+        } else
+#endif
+        {
+            @type@ *ip1 = (@type@*)args[0];
+            @type@ *ip2 = (@type@*)args[1];
+            @type@ *op1 = (@type@*)args[2];
+            const npy_intp vsize = 64;
+            const npy_intp n = dimensions[0];
+            const npy_intp peel = npy_aligned_block_offset(ip1, sizeof(@type@), vsize, n);
+            const npy_intp blocked_end = npy_blocked_end(peel, sizeof(@type@), vsize, n);
+            npy_intp i;
+
+	     _Pragma("novector");
+            for(i = 0; i < peel; i++) {
+                op1[i] = ip1[i] @OP@ ip2[i];
+            }
+
+            {
+                npy_intp j, j_max = blocked_end - peel;
+		j_max &= (~0xf);
+		const npy_intp blocked_end = j_max + peel;
+                if (j_max > 0) {
+                    @type@ *ip1_aligned = ip1 + peel, *op1_shifted = op1 + peel, *ip2_shifted = ip2 + peel;
+
+		    if( DISJOINT_OR_SAME(op1_shifted, ip1_aligned, j_max, 1) &&
+			DISJOINT_OR_SAME(op1_shifted, ip2_shifted, j_max, 1) ) {
+			__assume_aligned(ip1_aligned, 64);
+			_Pragma("vector");
+			for(j = 0; j < j_max; j++) {
+			    op1_shifted[j] = ip1_aligned[j] @OP@ ip2_shifted[j];
+			}
+		    } else {
+			__assume_aligned(ip1_aligned, 64);
+			for(j = 0; j < j_max; j++) {
+			    op1_shifted[j] = ip1_aligned[j] @OP@ ip2_shifted[j];
+			}
+		    }
+
+                    i = blocked_end;
+                }
+            }
+
+	     _Pragma("novector");
+            for(; i < n; i++) {
+                op1[i] = ip1[i] @OP@ ip2[i];
+            }
+        }
+    } else if(IS_BINARY_CONT_S1(@type@, @type@)) {
+        @type@ *ip1 = (@type@*)args[0];
+        @type@ *ip2 = (@type@*)args[1];
+        @type@ *op1 = (@type@*)args[2];
+        const npy_intp vsize = 64;
+        const npy_intp n = dimensions[0];
+        const npy_intp peel = npy_aligned_block_offset(ip2, sizeof(@type@), vsize, n);
+        const npy_intp blocked_end = npy_blocked_end(peel, sizeof(@type@), vsize, n);
+        npy_intp i;
+
+        const @type@ ip1c = ip1[0];
+	 _Pragma("novector");
+        for(i = 0; i < peel; i++) {
+            op1[i] = ip1c @OP@ ip2[i];
+        }
+
+        {
+            npy_intp j, j_max = blocked_end - peel;
+            if (j_max > 0) {
+                @type@ *ip2_aligned = ip2 + peel, *op1_shifted = op1 + peel;
+
+                __assume_aligned(ip2_aligned, 64);
+                for(j = 0; j < j_max; j++) {
+                    op1_shifted[j] = ip1c @OP@ ip2_aligned[j];
+                }
+
+                i = blocked_end;
+            }
+        }
+
+	 _Pragma("novector");
+        for(; i < n; i++) {
+            op1[i] = ip1c @OP@ ip2[i];
+        }
+    } else if(IS_BINARY_CONT_S2(@type@, @type@)) {
+        @type@ *ip1 = (@type@*)args[0];
+        @type@ *ip2 = (@type@*)args[1];
+        @type@ *op1 = (@type@*)args[2];
+        const npy_intp vsize = 64;
+        const npy_intp n = dimensions[0];
+        const npy_intp peel = npy_aligned_block_offset(ip1, sizeof(@type@), vsize, n);
+        const npy_intp blocked_end = npy_blocked_end(peel, sizeof(@type@), vsize, n);
+        npy_intp i;
+
+        const @type@ ip2c = ip2[0];
+	 _Pragma("novector");
+        for(i = 0; i < peel; i++) {
+            op1[i] = ip1[i] @OP@ ip2c;
+        }
+
+        {
+            npy_intp j, j_max = blocked_end - peel;
+            if (j_max > 0) {
+                @type@ *ip1_aligned = ip1 + peel, *op1_shifted = op1 + peel;
+
+                __assume_aligned(ip1_aligned, 64);
+                for(j = 0; j < j_max; j++) {
+                    op1_shifted[j] = ip1_aligned[j] @OP@ ip2c;
+                }
+
+                i = blocked_end;
+            }
+        }
+
+	 _Pragma("novector");
+        for(; i < n; i++) {
+            op1[i] = ip1[i] @OP@ ip2c;
+        }
+    } else if (IS_BINARY_REDUCE) {
+#if @PW@
+        @type@ * iop1 = (@type@ *)args[0];
+        npy_intp n = dimensions[0];
+
+        *iop1 @OP@= pairwise_sum_@TYPE@(args[1], n, steps[1]);
+#else
+        BINARY_REDUCE_LOOP(@type@) {
+            io1 @OP@= *(@type@ *)ip2;
+        }
+        *((@type@ *)iop1) = io1;
+#endif
+    } else if (!run_binary_simd_@kind@_@TYPE@(args, dimensions, steps)) {
+        BINARY_LOOP {
+            const @type@ in1 = *(@type@ *)ip1;
+            const @type@ in2 = *(@type@ *)ip2;
+            *((@type@ *)op1) = in1 @OP@ in2;
+        }
+    }
+}
+/**end repeat1**/
+
+/**begin repeat1
+ * #kind = equal, not_equal, less, less_equal, greater, greater_equal,
+ *        logical_and, logical_or#
+ * #OP = ==, !=, <, <=, >, >=, &&, ||#
+ */
+NPY_NO_EXPORT void
+@TYPE@_@kind@(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
+{
+    if (!run_binary_simd_@kind@_@TYPE@(args, dimensions, steps)) {
+        BINARY_LOOP {
+            const @type@ in1 = *(@type@ *)ip1;
+            const @type@ in2 = *(@type@ *)ip2;
+            *((npy_bool *)op1) = in1 @OP@ in2;
+        }
+    }
+}
+/**end repeat1**/
+
+NPY_NO_EXPORT void
+@TYPE@_logical_xor(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
+{
+    BINARY_LOOP {
+        const int t1 = !!*(@type@ *)ip1;
+        const int t2 = !!*(@type@ *)ip2;
+        *((npy_bool *)op1) = (t1 != t2);
+    }
+}
+
+NPY_NO_EXPORT void
+@TYPE@_logical_not(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
+{
+    UNARY_LOOP {
+        const @type@ in1 = *(@type@ *)ip1;
+        *((npy_bool *)op1) = !in1;
+    }
+}
+
+/**begin repeat1
+ * #kind = isnan, isinf, isfinite, signbit#
+ * #func = npy_isnan, npy_isinf, npy_isfinite, npy_signbit#
+ **/
+NPY_NO_EXPORT void
+@TYPE@_@kind@(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
+{
+    if (!run_@kind@_simd_@TYPE@(args, dimensions, steps)) {
+        UNARY_LOOP {
+            const @type@ in1 = *(@type@ *)ip1;
+            *((npy_bool *)op1) = @func@(in1) != 0;
+        }
+    }
+    npy_clear_floatstatus_barrier((char*)dimensions);
+}
+/**end repeat1**/
+
+NPY_NO_EXPORT void
+@TYPE@_spacing(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
+{
+    UNARY_LOOP {
+        const @type@ in1 = *(@type@ *)ip1;
+        *((@type@ *)op1) = npy_spacing@c@(in1);
+    }
+}
+
+NPY_NO_EXPORT void
+@TYPE@_copysign(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
+{
+    BINARY_LOOP {
+        const @type@ in1 = *(@type@ *)ip1;
         const @type@ in2 = *(@type@ *)ip2;
         *((@type@ *)op1)= npy_copysign@c@(in1, in2);
     }
@@ -1938,9 +3345,15 @@ NPY_NO_EXPORT void
 NPY_NO_EXPORT void
 @TYPE@_square(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(data))
 {
-    char * margs[] = {args[0], args[0], args[1]};
-    npy_intp msteps[] = {steps[0], steps[0], steps[1]};
-    if (!run_binary_simd_multiply_@TYPE@(margs, dimensions, msteps)) {
+#if @SUPPORTED_BY_VML@
+    if(IS_UNARY_CONT(@type@, @type@) &&
+           dimensions[0] > VML_TRANSCEDENTAL_THRESHOLD &&
+           DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@)) ) {
+        CHUNKED_VML_CALL2(v@s@Sqr, dimensions[0], @type@, args[0], args[1]);
+        /* v@s@Sqr(dimensions[0], (@type@*) args[0], (@type@*) args[1]); */
+    } else
+#endif
+    {
         UNARY_LOOP {
             const @type@ in1 = *(@type@ *)ip1;
             *((@type@ *)op1) = in1*in1;
@@ -1951,10 +3364,15 @@ NPY_NO_EXPORT void
 NPY_NO_EXPORT void
 @TYPE@_reciprocal(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(data))
 {
-    @type@ one = 1.@c@;
-    char * margs[] = {(char*)&one, args[0], args[1]};
-    npy_intp msteps[] = {0, steps[0], steps[1]};
-    if (!run_binary_simd_divide_@TYPE@(margs, dimensions, msteps)) {
+#if @SUPPORTED_BY_VML@
+    if(IS_UNARY_CONT(@type@, @type@) &&
+           dimensions[0] > VML_TRANSCEDENTAL_THRESHOLD &&
+           DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@)) ) {
+        CHUNKED_VML_CALL2(v@s@Inv, dimensions[0], @type@, args[0], args[1]);
+        /* v@s@Inv(dimensions[0], (@type@*) args[0], (@type@*) args[1]); */
+    } else
+#endif
+    {
         UNARY_LOOP {
             const @type@ in1 = *(@type@ *)ip1;
             *((@type@ *)op1) = 1/in1;
@@ -1982,7 +3400,15 @@ NPY_NO_EXPORT void
 NPY_NO_EXPORT void
 @TYPE@_absolute(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
 {
-    if (!run_unary_simd_absolute_@TYPE@(args, dimensions, steps)) {
+#if @SUPPORTED_BY_VML@
+    if(IS_UNARY_CONT(@type@, @type@) &&
+           dimensions[0] > VML_TRANSCEDENTAL_THRESHOLD &&
+           DISJOINT_OR_SAME(args[0], args[1], dimensions[0], sizeof(@type@)) ) {
+        CHUNKED_VML_CALL2(v@s@Abs, dimensions[0], @type@, args[0], args[1]);
+        /* v@s@Abs(dimensions[0], (@type@*) args[0], (@type@*) args[1]); */
+    } else
+#endif
+    {
         UNARY_LOOP {
             const @type@ in1 = *(@type@ *)ip1;
             const @type@ tmp = in1 > 0 ? in1 : -in1;
@@ -2432,9 +3858,18 @@ HALF_ldexp_long(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UN
  * #ftype = npy_float, npy_double, npy_longdouble#
  * #c = f, , l#
  * #C = F, , L#
+ * #s = s, d, d#
+ * #SUPPORTED_BY_VML = 1, 1, 0#
  */
 
 /* similar to pairwise sum of real floats */
+#if defined(__ICC) || defined(__INTEL_COMPILER)
+#ifdef _MSC_VER
+#pragma intel optimization_level 1
+#else
+#pragma intel optimization_level 2
+#endif
+#endif
 static void
 pairwise_sum_@TYPE@(@ftype@ *rr, @ftype@ * ri, char * a, npy_intp n,
                     npy_intp stride)
@@ -2471,14 +3906,14 @@ pairwise_sum_@TYPE@(@ftype@ *rr, @ftype@ * ri, char * a, npy_intp n,
 
         for (i = 8; i < n - (n % 8); i += 8) {
             /* small blocksizes seems to mess with hardware prefetch */
-            NPY_PREFETCH(a + (i + 512/(npy_intp)sizeof(@ftype@))*stride, 0, 3);
-            r[0] += *((@ftype@ *)(a + (i + 0) * stride));
+            NPY_PREFETCH(a + (i + 512 /(npy_intp)sizeof(@ftype@))*stride, 0, 3);
+	    r[0] += *((@ftype@ *)(a + (i + 0) * stride));
             r[1] += *((@ftype@ *)(a + (i + 0) * stride + sizeof(@ftype@)));
-            r[2] += *((@ftype@ *)(a + (i + 2) * stride));
+	    r[2] += *((@ftype@ *)(a + (i + 2) * stride));
             r[3] += *((@ftype@ *)(a + (i + 2) * stride + sizeof(@ftype@)));
-            r[4] += *((@ftype@ *)(a + (i + 4) * stride));
+	    r[4] += *((@ftype@ *)(a + (i + 4) * stride));
             r[5] += *((@ftype@ *)(a + (i + 4) * stride + sizeof(@ftype@)));
-            r[6] += *((@ftype@ *)(a + (i + 6) * stride));
+	    r[6] += *((@ftype@ *)(a + (i + 6) * stride));
             r[7] += *((@ftype@ *)(a + (i + 6) * stride + sizeof(@ftype@)));
         }
 
@@ -2735,10 +4170,30 @@ NPY_NO_EXPORT void
 NPY_NO_EXPORT void
 @TYPE@_absolute(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
 {
-    UNARY_LOOP {
-        const @ftype@ in1r = ((@ftype@ *)ip1)[0];
-        const @ftype@ in1i = ((@ftype@ *)ip1)[1];
-        *((@ftype@ *)op1) = npy_hypot@c@(in1r, in1i);
+    int ignore_fpstatus = 0;
+
+    // FIXME: abs function VML for complex numbers breaks FFT test_basic.py
+    //if(steps[0]/2 == sizeof(@ftype@) && steps[1] == sizeof(@ftype@) && dimensions[0] > VML_TRANSCEDENTAL_THRESHOLD) {
+#if @SUPPORTED_BY_VML@
+    if(0 == 1) {
+        ignore_fpstatus = 1;
+        CHUNKED_VML_CALL2(v@s@Abs, dimensions[0], @ftype@, args[0], args[1]);
+        /* v@s@Abs(dimensions[0], (@ftype@ *) args[0], (@ftype@ *) args[1]); */
+    } else
+#endif
+    {
+        UNARY_LOOP {
+            const @ftype@ in1r = ((@ftype@ *)ip1)[0];
+            const @ftype@ in1i = ((@ftype@ *)ip1)[1];
+            if(in1r == 0.0 && in1i == 0.0){
+                ignore_fpstatus = 1;
+            }
+            *((@ftype@ *)op1) = npy_hypot@c@(in1r, in1i);
+        }
+    }
+
+    if(ignore_fpstatus) {
+        feclearexcept(FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW | FE_INVALID);
     }
 }
 
@@ -2764,6 +4219,7 @@ NPY_NO_EXPORT void
                             (CEQ(in1r, in1i, 0.0, 0.0) ?  0 : NPY_NAN@C@));
         ((@ftype@ *)op1)[1] = 0;
     }
+    feclearexcept(FE_INVALID);
 }
 
 /**begin repeat1
diff --git a/numpy/core/src/umath/loops.h.src b/numpy/core/src/umath/loops.h.src
index 7f05a693a..8079512b3 100644
--- a/numpy/core/src/umath/loops.h.src
+++ b/numpy/core/src/umath/loops.h.src
@@ -173,8 +173,16 @@ NPY_NO_EXPORT void
 /**begin repeat
  *  #TYPE = FLOAT, DOUBLE#
  */
+
+/**begin repeat1
+ * #func = sin,cos,tan,sinh,cosh,tanh,fabs,floor,ceil,rint,trunc,sqrt,invsqrt,log10,log,erf,
+ *         exp,expm1,arcsin,arccos,arctan,arcsinh,arccosh,arctanh,log1p,exp2,log2,cbrt#
+ */
 NPY_NO_EXPORT void
-@TYPE@_sqrt(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func));
+@TYPE@_@func@(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func));
+
+/**end repeat1**/
+
 /**end repeat**/
 
 /**begin repeat
-- 
2.20.1

