A Large Ion Collider Experiment

Améliorations du détecteur ALICE du LHC (CERN)

Ginés MARTINEZ GARCIA (Subatech)

Conseil Scientifique de l'IN2P3, séance ouverte du 30 janvier 2014

ALICE : Étude du plasma de quarks et de gluons

Étude expérimentale du diagramme de phase de la matière hadronique via les collisions entre ions lourds aux énergies ultra relativistes

Le RUN1 du LHC: 2010-2013

Nombreux résultats obtenus par la collaboration ALICE. Voir présentation par Y. Schutz lors du CS IN2P3 du juin 2012.

- ✓ 2010 p-p à 0,9 7 TeV.
- \checkmark 2010 Pb-Pb à 2,76 TeV $L_{int} \sim$ 10 $\mu b^{\text{--1}}$ (MB et MUON).
- ✓ 2011 p-p à 2,76 7 TeV.
- ✓ 2011 Pb-Pb à 2,76 TeV L_{int} ~ 150 µb⁻¹ (MB, centralité et rares).
- ✓ 2012 p-p à 8 TeV (EMCAL et MUON) L_{int} ~ 3 pb⁻¹.
- ✓ 2013 Pb-p/p-Pb à 5 TeV L_{int} ~10 nb⁻¹ (MB et rares).

Le détecteur ALICE

ALICE-France IPHC Strasbourg IPN Lyon IPN Orsay IRFU Saclay LPC Clermont LPSC Grenoble Subatech Nantes

ALICE: quelques mots sur la production Scientifique

Source: inspirehep.net (type p)

✓ 68 publications

(première soumise en nov. 2009).

✓ 13 articles avec une

forte contribution française.

✓ 10 publications avec

le spectromètre à

muons.

- 3. Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV (343) ALICE Collaboration (K Aamodt (Bergen U.) et al.). Nov 2010. 10 pp. Published in Phys.Rev.Lett. 105 (2010) 252302 DOI: 10.1103/PhysRevLett.105.252302 e-Print: arXiv:1011.3914 [nucl-ex] | PDF References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote OERN Document Server: ADO Abstract Service Detailed record - Cited by 343 records [250+
- 15. J/ψ suppression at forward rapidity in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV ⁽⁸⁷⁾ ALICE Collaboration (Betty Abelev (LLNL, Livermore) et al.). Feb 2012. 16 pp. Published in Phys.Rev.Lett. 109 (2012) 072301 CERN-PH-EP-2012-012 DOI: 10.1103/PhysRevLett.109.072301 e-Print: arXiv:1202.1383 [hep-ex] | PDF References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote CERN Document Server ; ADS Abstract Service Data: <u>INOPIRE | HepData</u> Detailed record - Cited by 87 records 50+

Stratégie à 10 ans de la collaboration ALICE

Bas p_T et |y| < 4 pour saveurs lourdes et charmonium, dilepton et « chimie » de jets en ions lourds

- ✓ Saveurs lourdes : mesure de la section efficace totale, $p_T \ge 0$ sur toute la gamme de rapidité couverte par ALICE.
- ✓ Quarkonia : mesure de précision de la dissociation et de la régénération des états du quarkonium.
- ✓ Di-leptons de basse masse : mesure des photons virtuels thermiques et de la fonction spectrale du méson p pour étudier la restauration de la symétrie chirale.
- ✓ Jets : Identification de particules dans les jets, jets c et b à bas p_T et dissipation de l'énergie perdue par le jet dans le milieu.

- Le RUN2 du LHC : 2015-2018 Pb-Pb à 5 TeV et $L_{int} \sim 1 \text{ nb}^{-1}$ (x10)
- Détecteur complet :
 - -TRD et DCAL installés en 2014.
- Physique PQG :
 - -spectres des hadrons légers et saveurs lourdes.
 - –flow et R_{AA} de hadrons légers.
 - $-R_{AA}$ des saveurs lourdes et quarkonia.
 - -modification des jets.
- p-p comparable à Pb-Pb.

Le RUN3 du LHC: 2019-2025

Pb-Pb à 5.5 TeV $L_{int} \sim 10 \text{ nb}^{-1}$

- Amélioration du détecteur ALICE (LS2):
- Électronique de lecture à 50-100 kHz Pb-Pb MB (MUON)
- Nouvel ITS
 - -Nouvelles chambres de la TPC
- Trajectomètre interne pour le spectromètre à muons
 - -Nouvelle architecture DAQ-HLT-Online-Offline (O2): 1 To/s \rightarrow 20 Go/s Toujours une implication française sur

les analyses EMCAL/DCAL

Les améliorations d'ALICE pour le RUN3

Améliorations d'ALICE

LoI: ✓ ALICE

- ✓ ITS
- ✓ MFT

TDR: ✓ Système de lecture ✓ ITS

✓ TPC

CS IN2P3 | 30 janvier 2014 | Amélioration du détecteur ALICE du LHC (CERN)

ALICE

Le spectromètre à muons

RUN3 du LHC: Nouvelle électronique de lecture. Muon trigger -> Muon ID

CS IN2P3 | 30 janvier 2014 | Amélioration du détecteur ALICE du LHC (CERN)

Figures 2.32, 2.38 et 2.40 de la Lol d'amélioration d'ALICE

2

CS IN2P3 | 30 janvier 2014 | Amélioration du détecteur ALICE du LHC (CERN)

0.6

0.8

1.2

Dimuon p_T (GeV/c)

1.4

0

0.2

0.4

5

6 7 p_ (GeV/c)

L'identificateur de muons

Nouvelle FEE avec amplification: limiter le viellissement et augmenter le taux de comptage.

- ✓ 4 plans RPC avec 20992
 - voies, 2384 cartes FEE.
- ✓ R&D nouvelle FEE depuis fin 2012 : ASIC et carte FEERIC.
- ✓ Lecture à 100kHz Pb-Pb. Nouvelles cartes locales et régionales.

Coût électronique pour l'identificateur de muons

2 ETP FE (LPC Clermont) et 2 ETP RO (Subatech)

		2014	2015	2016	2017	2018	Total
R&D RO	IN2P3 (k€)	0	25	25	0	0	50
	(kCHF)	50	260	85	85	0	480
FE + RPC	IN2P3 (k€)	15	110	37.5	37.5	0	200
	(kCHF)	40	130	65	65	0	300
HU	IN2P3 (k€)	30	105	52.5	52.5	0	240
Total investigation	(kCHF)	90	390	150	150	0	780
Iotal Investissement	IN2P3 (k€)	45	215	90	90	0	440
Total avec R&D	IN2P3 (k€)	45	240	115	90	0	490
	2 laborato	2 laboratoires IN2P3 / 3			% financ	cement I	N2P3

ALICE

Le trajectomètre à muons

Lecture à 100 kHz en Pb-Pb MB

✓ Actuellement la limite de lecture à 1 kHz (grâce au

déclencheur muon équivaut à ~4kHz en MB).

 ✓ 38000 ASIC SAMPA (MUON+TPC), 19000 cartes FE, 500 GBT et 20 CRU.

Nouvel ASIC SAMPA pour le spectromètre.

Collaboration IRFU, Lund, Bergen, Sao Paolo et CERN

- ASIC commun pour la TPC.
- TSMC CMOS 130
 nm ; technologie 1.2
 V (Taiwan).
- Conception et production en collaboration avec le groupe de Sao Paolo.
- Run d'ingénierie en mai 2015.

Specification	МСН
Voltage supply	1.25 V
Polarity	Positive/negative
Detector capacitance	40 – 80 pF
Peaking time	300 ns
Equivalent Noise (ENC)	< 950e@40pF* < 1600e@80pF*
Shaping order	4th
Linear range	500 fC on 2 V ((Vpp = -1 -> 1 V)
Sensitivity	4 mV/fC
Non-linearity (CSA+Shaper)	< 1%
ADC resolution	10 bit
Sampling frequency	10 MHz (or 20 MHz ?)
Power consumption/channel	4 mW (ADC) ; 6 mW (CSA +Shaper)
Channels per chip	32

Cartes frontales pour le trajectomètre

- 19000 cartes frontales (64 canaux, 2 ASICs SAMPA par carte (IPN Orsay).
- Cartes pour St12 différentes de celles des St345.
- Bus des données digitales extérieur aux chambres: câbles St345 et PCB pour St12

CRU

Le système de lecture

GBT+CRU commun pour toutes les améliorations d'ALICE GBT

80. 160 and 320 Mb/s ports

- ✓ Carte GBT

 (Giga-Bit
 Transceiver)
 avec Cagliari et
 Saclay.
- ✓ CRU (Common Readou Unit): Hongrie et Inde.

Control Logic

12C Slave

I2C

Port

JTAG

Port

CLK Reference/

Configuration

I2C Maste

External clock reference

Coût électronique pour le trajectomètre à muons

- ✓ ASIC SAMPA (1406 kCHF) par le groupe de Sao Paolo.
- ✓ Les cartes (745 kCHF = 610 k€) par l'IPN d'Orsay.
 3 ETP.
- ✓ CRU (158 kCHF) par les laboratoires indiens.
- ✓ Data transmission: (721 kCHF ~ 600 k€): Cagliari et Saclay.

	Item		Coût total	
-06	R&D IN2P3 (k€)		100	
pe de	SAMPA		1 406	
	FEC	total (kCHF)		745
CHF =		IN2P3 (k€)		610
d'Orsay.	câble FE2GBT	total (kCHF)		285
		IN2P3 (k€)		40
par les	GBT		271	
ıs.	Fibres optiques		165	
r (721	CRU		182	
Cagliari	Distribution trigger		10	
0	Total investissement	total (kCHF)		3 064
	Total investissement	IN2P3 (k€)		650
	Total avec R&D	IN2P3 (k€)		750
3 laboratoires	IN2P3 / 7	26% finar	ncement IN2P	3

CS IN2P3 | 30 janvier 2014 | Amélioration du détecteur ALICE du LHC (CERN)

ALICE

Le nouvel ITS pour ALICE

Un trajectomètre de haute précision. 10 m² en silicium à pixels.

- Amélioration d'un facteur 3 de la résolution sur le paramètre d'impact des particules.
- ✓ Lecture à 50-100 kHz en Pb-Pb MB.
- ✓ Rayon de 2.24 cm pour la première ^{Beam pipe} couche.
- ✓ 0.3% X_0 par couche.
- ✓ 7 couches de capteurs MAPS avec la technologie CMOS 0.18µm de TowerJazz.

Le Technical Design Report.

✓ Approuvé par le LHCC en

décembre 2013:

- ✓ <u>http://cds.cern.ch/record/1625842?</u> <u>In=en</u>
- La prochaine étape, avant le *CERN Research Board, sera* la revue du projet par le
 Upgrade Cost Group (UCG)
 en mars 2014.

Résolution sur le paramètre d'impact des particules ALICE

- ✓ Amélioration considérable des performances de l'ITS actuel.
- Crucial pour la physique des saveurs lourdes ouvertes.

ouvertes.

✓ Quarkonia.

basses masses

✓ Saveurs lourdes

en di-électron.

CS IN2P3 | 30 janvier 2014 | Amélioration du détecteur ALICE du LHC (CERN)

Observable	ITS actuel, 0.1 nb ⁻¹ p _T ^{min} (GeV/c) erreur statistique		nouvell	TS 10 nb ⁻¹
Observable			рт ^{min} (GeV/c)	erreur statistique
		saveurs	lourdes	
R _{AA} méson <i>D</i>	1	10 %	0	0.3 %
R _{AA} méson <i>D₅</i>	4	15 %	<2	3 %
R _{AA} méson <i>D</i> de <i>B</i>	3	30 %	2	1 %
R _{AA} <i>JIψ</i> de <i>B</i>	1.5	15 %	1	5 %
production B+	non m	nesurable	3	10 %
RAA Λc	non m	nesurable	2	15 %
rapport Λ₀/D₀	non m	nesurable	2	15 %
production Λ _b	non m	nesurable	7	20 %
v₂ méson D	1 10 %		0	0.2 %
v₂ méson D₅	non m	nesurable	<2	8 %
v₂ méson <i>D</i> de <i>B</i>	non m	nesurable	2	8 %
v₂ Jlψ de B	non m	nesurable	1	60 %
<i>V</i> ₂ ∧ _c	non m	nesurable	3	20 %
	di-électrons			
Température	non m	nesurable		10 %
V 2	non mesurable			10 %
Fonction spectrale	non mesurable		0.3	20 %
		Hyperi	noyau	
production ³ ^A H	2	18 %	2	1.7 %

Les motivations de physique du nouvel ITS.

Les performances du nouvel ITS

Mesure de saveurs lourdes

Le capteur du nouvel ITS Rôle moteur de la France dans la R&D

- ✓ MAPS (Monolithiques Active
 Pixel Sensors) en technologie
 CMOS 0.18 µm de
 - TowerJazz.
- ✓ Pixels de 30x30 µm² et 50 µm
 d'épaisseur.
- ✓ Tolérance aux radiations :
 700 kRad (ionisantes) et
 10¹³ neq/cm² (non ionisantes)

Epaisseur	50 μm
Résolution spatiale couches internes	5 µm
Résolution spatiale couches externes	10 µm
Dimension du capteur	15 x 30 mm²
Densité de puissance maximale couches internes	300 mW/cm ²
Densité de puissance maximale couches externes	100 mW/cm ²
Temps d'intégration maximal	30 µs
Efficacité de détection minimale	99 %

Contribution française (IPHC et LPSC)

- ✓ R&D sur les capteurs Mistral et Astral. Conception et test des micro-circuits.
- ✓ Analyse de tests sous faisceaux et en laboratoire.
- ✓ Production et test de modules (pour les couches #5 et #6).
- ✓ Mécanique de moules et de pièces composites pour les échelles.
- ✓ Coordination du développement des logiciels de simulation et de reconstruction du nouvel ITS.
- Simulations pour la reconstruction de baryons charmés et de jets beaux.

	ETP 2014-2015	ETP 2016-2018
R&D Pixel	16	0
Production et Test modules	2	5
Développement logiciels	2	2
Total	20	7

Capteur pour le nouvel ITS R&D à l'IPHC

- ✓ Nombreux développements avec le run d'ingénierie de 2013.
- ✓ Capteurs MISTRAL et ASTRAL.
- Soumission du prototype complet pour février 2014: 3 FSBBs, 1
 MIMOSA-34 avec grands pixels, 1
 MIMOSA-22THRb avec grands pixels, 1 MIMOSA-32 pour l'optimisation de l'électronique du pixel.
- ✓ Alternative développée au sein de la collaboration: capteur ALPIDE.
- ✓ Décision sur le capteur pour ALICE à partir de juillet 2014.

Les couches externes

Contribution à la fabrication des couches externes par l'IPHC

Coût total du nouvel ITS

Total de 12 MCHF.

Table 3.1. Ous command and sharing of responsioning	Table 9.1:	Cost estimate	and sharing	of responsibilities
--	------------	---------------	-------------	---------------------

Item	Cost (kCHF)	Institutes	v		,
Total	12 039		Support and Installation	1031	
Pixel Chip CMOS wafers Thinning & dicing Series test	5000 3500 1000 500	CERN, INFN, IPHC, STFC CERN, INFN, IPHC, STFC CCNU, INFN, Korea	Inner Layers End-Wheels Middle Layers End-Wheels Outer Layers End-Wheels Inner Barrel Shell Inner Service Barrel	$ \begin{array}{r} 48\\110\\125\\10\\104\end{array} $	CERN LBNL INFN CERN CERN
Inner Layer Stave FPC construction FPC test HIC assembly & test SF & Cold Plate construction	$225 \\ 43 \\ 12 \\ 30 \\ 40$	CERN, St. Petersburg, Ukraine CERN, Ukraine CERN CERN CERN, St. Petersburg	Outer Barrel Shell Outer Barrel Cones Outer Service Barrel Installation mechanics & test		CERN CERN, INFN, LBNL CERN, INFN CERN, LBNL, LPSC
SF & Cold Plate test Stave assembly & test	20 80	CERN, St. Petersburg CERN	Read-out electronics Data e-links	1200 600	INFN, Kosice, LBNL, Netherlands, Prague
Middle Layers FPC construction FPC test	644 180 48	CERN, LBNL, Ukraine STFC, LBNL	Patch panels Read-out Unit Optical links	$ \begin{array}{r} 100 \\ 300 \\ 200 \end{array} $	Netherlands COMSATS, INFN, LBNL COMSATS, INFN, LBNL
Module assembly & test SF & Cold Plate construction SF & Cold Plate test Stave assembly & test	$ \begin{array}{r} 117 \\ 126 \\ 48 \\ 125 \end{array} $	CERN, LBNL, STFC CERN, St. Petersburg CERN, LBNL, St. Petersburg CERN, LBNL	Power distribution Power supplies Power distribution Power regulation	1400 1000 200 200	CERN, INFN, Netherlands Netherlands Netherlands
Outer Layers FPC construction	1789 541	INFN Netherlands Ukraine	DCS	250	Netherlands
FPC test	144	CCNU, Korea, Thailand	Cooling	500	Netherlands
SF & Cold Plate construction SF & Cold Plate test Stave assembly & test	$ \begin{array}{r} 340 \\ 240 \\ 144 \\ 380 \end{array} $	CERN, St. Petersburg CERN, St. Petersburg INFN, Netherlands ML	Tableau	9.1, I	TS TDR

Demande de budget du nouvel ITS à l'IN2P3

IPHC: R&D pixels, production galettes, assemblage et tests des modules (couches 5 et 6)

		2014	2015	2016	2017	2018	Total
	(kCHF)						
Rad Pixei	IN2P3 (k€	360	360	0	0	0	720
Fabrication et	(kCHF)	0	0	5 000	0	0	5 000
pixel	IN2P3 (k€	•) 0	0	900	0	0	900
Fabrication et Test modules	(kCHF)	0	250	250	0	0	500
	IN2P3 (k€	•) 0	50	50	0	0	100
Total investissement	(kCHF)	0	250	5 250	0	0	5 500
	nt IN2P3 (k€) 0	50	950	0	0	1 000
Total avec R&D IN2P3 (k€)		360	410	950	0	0	1 720
	2 laboratoires IN2P3 / 33			10.2	2% finan	icement	IN2P3

MFT : Trajectomètre interne pour le spectromètre à muons

Le projet MFT en quelques mots.

- Trajectométrie de précision : dizaines des μm.
- 2000 particules chargées par unité de rapidité.
- Défi pour l'intégration et pour l'association des traces.

Addendum à la Lol d'ALICE

Lol MFT approuvée par le LHCC

http://cds.cern.ch/record/1592659?ln=fr

"Muon Forward Tracker (MFT) Addendum to the Letter of Intent endorsed and ALICE encouraged to prepare Technical Design Report." Message de Thomas ULLRICH (rapporteur ALICE au LHCC) reçu le 28 décembre 2013.

CR LHCC 26 septembre : https://cds.cern.ch/record/1624366/files/ LHCC-115.pdf)

The Muon Forward Tracker

Les principales motivations de physique.

Sujet	Observable	MUON upgrade	MUON + MFT upgrade
Heavy flavour	R _{AA} (J/ ψ from B)	Non mesurable	p⊤>0 ; 10% (to be improved "à la LHCb")
	v ₂ (J/ ψ from B)	Non mesurable	Not evaluated yet
	μ decays from c -hadrons	Non mesurable	p⊤>1;7%
	µ decays from b -hadrons	Non mesurable	p⊤>2 ; 10%
Charmonia	R _{AA} (prompt J/ ψ)	Non mesurable	рт>0 ; 10%
	v 2 (prompt J/ ψ)	Non mesurable	Not evaluated yet
	ψ '	рт>0 ; 30%	рт>0 ; 10%
Low Mass	Low Mass spectral func. and QGP radiation	Non mesurable	рт>1 ; 20%

Des cas de physique encore à évaluer.

- ✓ La réduction du fond dans la région de hautes masses n'a pas été étudiée. Cela sera surement crucial pour réduire les systématiques de la mesure des résonances Y(2S) et Y(3S).
- De surcroît, la mesure du drell-yan est extrêmement intéressant pour la physique des bottomonia.
- ✓ L'étude du continuum dans les masses intermédiaires (rayonnement du PQG) est à considérer.

La beauté à partir du J/ψ déplacé.

Analyse via I_{xy} présenté dans le LoI sera améliorée par l'analyse « à la LHCb » en I₂.

Unique au LHC pour $p_T=0$.

ALICE

Le HFM (Heavy Flavour Muons)

- Rejet du fond dû aux interactions secondaires dans les absorbeurs.
- Rejet des muons dus aux décroissances faibles de π et K.
- Jusqu'à $p_T=1$ GeV du muon ($p_T>4$ GeV aujourd'hui).
- La combinaison avec la mesure du B à partir du J/ ψ déplacé améliorera les performances de la mesure du charme.

ALICE

La mesure du ψ (2S).

Amélioration de la mesure du $\psi(2S)$. Un facteur 3-5 du rapport

S/B. Discrimination des modèles devient possible.

Les mésons vecteurs et les basses masses

Cas de physique unique pour ALICE au LHC

CS IN2P3 | 30 janvier 2014 | Amélioration du détecteur ALICE du LHC (CERN)

ALICE

Organisation du projet MFT

A. Uras (IPNL) WG1, R. Tieulent (IPNL) et F. Manso (LPC Clermont) WG3, F.
 Guilloux (IRFU) WG4, S. Bouvier (Subatech) WG5, et J.M. Buhour (Subatech)
 WG7, G. Batigne (Subatech) DPL, F. Orsini (IRFU) TC, G.M. PL

WG1: Physique et simulation rapides

A. Uras (IPNL)

WG3: Standalone tracking

F. Manso (LPCC) && R. Tieulent (IPNL)

Implémentation de l'algorithme "cellular automaton" en cours. NIM A489 (2002) 389

WG4: Pixel Sensor

F. Guilloux (IRFU)

- Nombreux développements avec le run d'ingénierie de mars 2013.
- M32V4 && RSBPix2 (architecture discriminateur dans le pixel) validés.
- ✓ Évoluer vers prototype de grande taille avec toutes les fonctionnalités : FSBB PixAM..
- ✓ Soumission prévue avril 2014.
- ✓ Décision sur le capteur pour ALICE à partir de juillet 2014.

WG4: Flex Printed Circuit

F. Guilloux (IRFU)

- ✓ Prototypes produits au CERN (R. de Oliveira)
- ✓ 2 autres prototypes à l'étude en 2014 pour des tests de bonding, et de drivers LVDS.

WG5: Assemblage

S. Bouvier (Subatech)

- ✓ 2014 : réalisation de prototypes d'échelles et mise en place procédure d'assemblage et outillages.
- ✓ Etude comparative des différentes techniques d'assemblage des capteurs sur FPC.

CS IN2P3 | 30 janvier 2014 | Amélioration du détecteur ALICE du LHC (CERN)

WG6: Électronique de lecture

C. Flouzat (IRFU) Clermont-Lyon-Nantes-Saclay

- ✓ Système de lecture d'ALICE pour le MFT: Capteur-GBT-CRU-DAQ.
- ✓ Dimensionnement Pb-Pb-MB 100kHz avec un facteur 3 de sécurité.
- ✓ Le mapping a été optimisé: 166 GBTs (6 plans MFT)
- ✓ ITS prévoit d'utiliser un système de lecture à 1 Gbit/s. Discussion avec ITS en cours.

/for coordia 1)

WG7: Mécanique et Intégration

J.M. Buhour (Subatech)

Lyon-Nantes-Orsay

CS IN2P3 | 30 janvier 2014 | Amélioration du détecteur ALICE du LHC (CERN)

WG7: Refroidissement

J.M. Buhour (Subatech)

- ✓ LoI: étude thermique réalisée.
- ✓ Puissance dissipée ~1.5 kW.
- ✓ Refroidissement à l'air est satisfaisant (LoI).
- Des nouvelles études sont nécessaires pour valider le refroidissement à air:
 - hypothèses actualisées.
 - description détaillée du MFT.
 - Convertisseurs DC-DC
 - études thermiques et des vibrations.

47

ALICE

WG8: Services

S. Bouvier (Subatech)

- ✓ Kick-off meeting avec la coordination technique d'ALICE en novembre 2013
- ✓ Service coté-A permettant l'installation à l'extérieur de la TPC.
- ✓ Utilisation des convertisseurs DC-DC
- ✓ 320 mm² section d'Aluminium. En outre: 18 tuyaux d'eau de 3 mm de diamètre et 166 fibres optiques.
- ✓ Des simulations des performances du tonneau central d'ALICE en cours.

Objectifs pour 2014

Année cruciale pour le projet MFT

Date	Objectif	WG
mars 2014	Confirmation du système de lecture	WG6 && ITS && MUON
mars 2014	Service MFT du côté A	WG8
avril 2014	Soumission PixAM	WG4
sep 2014	Décision capteur ALICE	WG4 && ITS
juillet 2014	Mécanique et intégration détaillée	WG7
sep 2014	Responsabilité pour la production des capteur et des échelles	WG5
sep 2014	Études thermiques et de vibration	WG7
sep 2014	Standalone tracking	WG3
sep 2014	Peaufiner la stratégie de physique	WG1
automne 2014	Technical Design Report pour le LHCC	ALL

CS IN2P3 | 30 janvier 2014 | Amélioration du détecteur ALICE du LHC (CERN)

Resources: MFT collaboration

Groupe	ITA 2014/15 (ETP)	ITA 2016/19 (ETP)	Responsabilités
Calcutta	-	-	CRU,
Clermont	1.0	2.0	DCS, électronique
Lyon	2.0	2.0	électronique de lecture, mécanique
Nantes	3.0	3.0	FPC, mécanique, assemblage
Orsay	0.1	0.0	expertise mécanique
Saclay	5.0	3.5	capteur, électronique de lecture,
St. Petersburg	-	1.0	mécanique

En contact avec les collaborateurs étrangers: Cape-Town, Wuhan, Seoul, Nakhon, ...

CS IN2P3 | 30 janvier 2014 | Amélioration du détecteur ALICE du LHC (CERN)

Ressources nécessaires

R&D et Production	ITA 2014/15 (ETP)	ITA 2016/19 (ETP)		
Capteur CMOS	4.0	2.5		
FPC, échelles	1.5 (+2.0)	1.5 (+2.0)		
Électronique de lecture	2.0 (+1.0)	2.5 (+1.0)		
Mécanique et refroidissement, services	3.0	3.0		
Contrôle du détecteur	0.1	0.5		
Reconstruction en ligne	0.5	0.5		
Total	11.0 (+3.0)	10.5 <mark>(+3.0)</mark>		

Reste à identifier les besoins en personnel pour l'assemblage (2 ETP) et l'électronique de lecture (1 ETP).

Discussion en cours avec Lyon-Nantes-Saclay-Clermont et consortium ITS.

Coût du MFT

	R&D 2014-2015 (kCHF)	Production 2016-2019 (kCHF)
Capteur CMOS	367	920
FPC, échelles, assemblage	265	1260
Électronique de lecture	20	420
Mécanique, intégration, refroidissement et services	128	1550
Total	780 (633 keuro)	4150 (3365 keuro)

Financement du projet MFT

Tutelle	R&D (CHF)	Production (CHF)	Commentaire		
IRFU	330 (268 k€)	986 (800 k€)	Demandé		
IN2P3	400 (325 k€)	2365 (1918 k€)	Aujourd'hui		
Autres	50 (41 k€)	799 (647 k€)	500 kCHF engagés		
Total	780 (633 k€)	4150 (3365 k€)			
	4 laboratoires IN2F	23 / 7 57% fi	57% financement IN2P3		

Demandes (IN2P3) pour l'amélioration d'ALICE

Projets MFT – MUON - ITS

Projet		2014	2015	2016	2017	2018	Total
ITS	Investissement	0	50	950	0	0	1 000
	Investissement + R&D	360	410	950	0	0	1 720
MUON	Investissement	45	215	395	435	0	1090
	Investissement + R&D	65	290	450	435	0	1240
MFT	Investissement	0	0	901	901	115	1918
	Investissement + R&D	162	162	901	901	115	2127
Total	Investissement	45	265	2246	1336	115	4008
	Investissement + R&D	587	862.2	2 301.467	1 336.467	115	5202

Conclusions

- ✓ L'expérience ALICE mènera à bien des études uniques du PQG au LHC pendant le run2 et run3.
- ✓ Des améliorations du détecteur sont prévues pendant LS2 (avant le run3) :
 - Nouvelle électronique MUON.
 - Nouvel ITS.
 - Trajectrométrie interne pour le spectromètre à muons : MFT.
- Un programme de physique ambitieux avec une grande visibilité des groupes français.

Backup slides

ALICE

ALICE EMCAL

Déclenchement pour la physique de jet dans ALICE et reconstruction de l'énergie neutre du iets

- ✓ Première amélioration du détecteur ALICE.
- ✓ Première échantillon des données avec le déclencheur EMCAL pris fin 2012 pour pp à 8 TeV.
- ✓ Analyse p-Pb en cours.

ALICE DCAL

EMCAL-DCAL pour les corrélations à grande pT

- ✓ Deuxième amélioration du détecteur ALICE.
- ✓ Structure et 5 SM installés en 2013.
- ✓ Installation de 3 SM restants en 2014.
- La physique de jets utilisant EMCAL-DCAL sera faite pendant le RUN2 au LHC.

Vue de DCAL du coté C de l'expérience ALICE

CS IN2P3 | 30 janvier 2014 | Amélioration du détecteur ALICE du LHC (CERN)

WG7: Mécanique et Intégration

J.M. Buhour (Subatech)

- ✓ Description détaillée du MFT pour l'été 2014.
- ✓ Réunions de travail avec ITS et la coordination technique d'ALICE.
- ✓ Description du tuyau faisceau presque finie.

