Etat des lieux pour CMS & ATLAS: préparation des upgrades

Programme LHC mis à jour en décembre 2013

Préparation de la phase I pour CMS & ATLAS Insertable B layer (IBL) pour ATLAS - LS1 (2014) Détecteur à pixels pour CMS - LS1.5 (2016-2017) Déclenchement calorimétrique CMS Mise en oeuvre dès maintenant ATLAS Installation pendant LS2

La phase II - HL-LHC pour CMS et ATLAS (2024-2025) Le remplacement des détecteurs de traces. Remplacement de l'électronique des calorimètres. Nouveau calorimètre avant pour CMS.

30.01.2014

CMS et ATLAS ont découvert un boson de Higgs

Ce nouveau boson est plus que simplement "une autre particule".

C'est le seul boson connu qui ne résulte pas des symétries de jauge de la théorie (le "modèle standard").

Il est associé à un champ responsable de la brisure de symétrie électrofaible et de la masse des particules.

Ce champ joue un rôle important dans l'histoire de la matière dans l'univers.

http://www.elsevier.com/locate/physletb

La caractérisation des propriétés du boson de Higgs est une priorité pour la communauté HEP au LHC

Le planning LHC présenté en décembre 2013

à partir de mi-2018 LS2

(2024 pour les injecteurs)

LS3

18 mois + 3 mois (service faisceaux) à partir de **2023** pour le LHC 30 Mois + 3 mois (service faisceaux)

CMS & ATLAS upgrades

$$\sqrt{s_{pp}} = 13-14 \text{ TeV}$$

 $\int L dt = 300 \ fb^{-1}$

(LS1 + LS2 = consolidation and phase I upgrades)

Phase II 2025-2035

$$\int L \, dt = 3000 \, fb^{-1}$$

(LS3 = phase II upgrades)

Ateliers HL-LHC

1-3 Octobre 2013

29 Septembre - 1er octobre 2014 ?

Accélérateurs, Physique, Technologies...

CMS - Synthèse du programme d'upgrade

Trigger/DAQ: nouvelle électronique pour le *trigger L1* (2015-2016)

- Pixels: nouveau détecteur de vertex à *pixels* (pour 2017)
- HCAL: nouvelle électronique pour HCAL (PMTs, SIPM)

LS3

2023-2024

2018-2019

LS2

S

Phase

30.01.2014

- Trigger/DAQ: nouveau track-trigger L1
- Tracker: nouveau trajectographe
- ECAL/HCAL endcaps: nouveaux calorimètres

Les upgrades pour CMS

Pour la construction, les groupes CMS de l'IN2P3 sont principalement impliqués depuis les origines dans les projets **ECAL** et **Tracker** (pour les M&O B, CMS est une « fédération de projets »)

Les upgrades de phase I de CMS concernent principalement l'électronique de déclenchement et le détecteur de vertex (pixels).

Les upgrades de phase II sont largement imposés par les dommages par irradiation et en partie par les conditions d'empilement.

Les groupes CMS de l'IN2P3 ont des engagements importants pour la Phase I (ECAL/Trigger, Tracker/pixel DAQ, …) avec des mises en route prévues avant LS2 (i.e. 2013-2017).

Les groupes CMS de l'IN2P3 sont impliqués dans le R&D de Phase II (assez avancé pour le tracker/pixel, « track-trigger »; en démarrage pour les calorimètres) avec des Technical Design Reports prévus pour 2016-2017.

Le R&D de Phase 2 c'est maintenant !

CMS upgrades

Phase I

Consolidation en cours et mise à niveau: 65MCHF dont 2MCHF de l'IN2P3

Subsystem/Common Item Budget (kCHF)								
	April 2013 RRB	October 2013 RRB						
Pixel Tracker	17,100	17,100						
HCAL	8,219	8,220						
HF - Phototubes	1,990	1,990						
Muon CSC	6,844	6,844						
Muon DT	2,200	2,200						
Muon RPC	4,220	4,220						
DAQ	6,700	6,700						
Trigger	4,600	5,674						
Common Items	16,196	12,141						
Magnet power and cryo	1,567	932						
Beam Instrumentation	1,672	1,356						
Infrastructure	5,423	3,655						
Test Beam Facilities Upgrade	620	250						
Safety systems upgrade	540	540						
Electronics Integration	1,780	1,338						
Engineering Integration	4,594	4,070						
Grand Total	68,070	65,089						
Common Fund	6,445	6,445						

Phase II

Mise à niveau ~270 MCHF 10 MCHF de l'IN2P3 ?

ltem	Sub-item	Estimated CORE Cost (MCHF 2013)
	Silicon Tracker	94
	Pixel Detector	34
Tracker		127
	Endcap Calorimeter Upgrade: EM & HAD	67
	HF upgrade to 4-channels per PMT	2
Calorimete	rs	69
	DT Electronics	7
	Endcap Muon System Upgrade	12
	High Eta Muon Tagging Station	6
Muon Syste	em	25
	L1-Trigger	7
	EB Frontend Electronics	11
Trigger Sys	stem and Front-end Electronics	18
	DAQ system: Clock, Readout, Network	5
	HLT	6
DAQ and H	LT	11
	Shielding Changes for HL-LHC	6
	Tooling, rail systems, cranes for LS3 work	5
	Common Systems and Installation	9
nfrastruct	ure and Common Systems	19
Total		269

CMS - Programme d'upgrade phase I

Trigger/DAQ

New backend electronic systems (muons and calorimeters)

- Commission in parallel to operation of current trigger in 2015

Contributions de CMS-IN2P3 Programme d'upgrade de phase I

Coût total pour CMS - Phase 1 : 65 000 kChF Engagements de l'IN2P3 = 2M€ dont « core »: 2 000 kChF (~75% de la contribution espérée par CMS au prorata des PhD-M&O)

IPNL Système de refroidissemenent pour le trajectomètre Conception, intégration, mise en œuvre LS1

600 kChF

300 kChF

IPHC DAQ pour le nouveau détecteur à pixels (post-LS1) Développement logiciel, mise en œuvre avant LS2

LLR

Système de déclenchement L1

Adaptation aux nouveaux liens optiques, mise en œuvre LS1 Développement d'algorithmes pour la nouvelle architecture avec µTCA et FPGA, mise en œuvre avant LS2 350 kChF

Fonds commun: 250 kChFContributions au central DAQ : 500 kChF

Tracker Upgrade – LS1

Services: Refroidissement CO₂

CAD design of 15 kW pixel cooling plant to be installed during LS1

Small (1 kW) plant built at IPNL for future testing of silicon strip modules

Services: Mise à niveau "Dry gas"

Aim: reduce TK dew point for cold operation

Global design, schematics, overall responsibility for project

Coordination of components construction, supervision of installation in USC and UXC

Upgrade Pixels – Phase 1

Responsabilité de la conception pour le DAQ Pixel upgrade Système µTCA

Prise en charge de la R&D + Prototypage + Production

- Acquisition de données (« pixFED »)
- Contrôle/commande («pixFEC » & « tkFEC »)

Prise en charge des aspects firmware (hardware)/software µTCA et opto-électronique avec avec F. Vasey et al. (ESE) au CERN

- Fin 2014, au redémarrage post LS1
 - Prototype de DAQ Pixel complet et opérationnel
 - pixFED (obligatoire)
 - pixFEC et tkFEC (optionnel mais bienvenus si présent)
 - prototype de DAQ Pixel connecté à la pilot blade au P5
 - Infrastructure uTCA (crates, synchro)
 - · Connexion au central DAQ

T1 2015

- Prototypes pixFEC & tkFEC disponibles
- Déclenchement d'une evaluation review pour valider la production de ces cartes (Cf. TDR Pixel upgrade)

2015

- Mise à l'échelle du système de DAQ (12 crates uTCA)
- Gestion de la production de masse pixFEDs, pixFECs et tkFECs

2016

- Intégration FEC/FED sur support uTCA pour boucles de calibration rapides
- Intégration détecteur Pixel au TIF puis au P5

Phase

Upgrade Trigger – Phase 1

Responsabilité du déclenchement ECAL de CMS

Nouveaux liens optiques

- Adaptation des TCC aux oSLB pour le transfert des données
- Nouvelle programmation (firmware) des TCC, GUI

Adaptation et tests de la nouvelle architecture (µTCA+FPGA)

- Développement des algorithmes de déclenchement sur FPGA
- Banc de tests pour les modules de sélection

ATLAS - Synthèse du programme d'upgrade

Letter of Intent for the Phase-I Upgrade of the ATLAS Experiment; CERN-LHCC-2011-012; LHCC-I-020;

Letter of Intent for the Phase-II Upgrade of the ATLAS Experiment; CERN-LHCC-2012-022; LHCC-I-02;

Contribution du CNRS/IN2P3 à l'upgrade d'ATLAS. Proposition soumise au Conseil Scientifique de l'IN2P3 du 21 Juin 2012

ATLAS Liquid Argon Calorimeter Phase-I Upgrade Technical Design Report : CERN-LHCC-2013-017 ; ATLAS-TDR-022 ;

ATLAS Insertable B-Layer Technical Design Report : CERN-LHCC-2010-013 ; ATLAS-TDR-19

ATLAS upgrades

Phase 0: Insertable B layer - En cours de construction pour installation le 6 mai 2014

9.7MCHF dont 0.6 MCHF de l'IN2P3

Phase I: consolidation en cours et mise à niveau

36MCHF dont 1.8 MCHF de l'IN2P3

Phase II: mise à niveau estimée à ~275 MCHF dont ~20-25 MCHF de l'IN2P3 ?

Le R&D de Phase 2 c'est maintenant !

IBL - LS1

Installation d'une nouvelle couche de pixels (6M de canaux) à R=3.325 cm

Détecteur pixels actuel 5.05 < R < 12.25 cm - 80 M canaux

Construction de 14 échelles équipées chacune de 16 modules

Incident technique en septembre: corrosion

Mauvaise procédure de tests: condensation sur les échelles Corrosion observée suite au dépôt d'eau sur les Al "wire bonds" Pas de corrosion sans eau

Neuf échelles construites sans corrosion + 5 réparées Procédure d'intégration testée et validée Installation prévue début mai 2014

CPPM, LPSC, LAPP, LAL, LPNHE

30.01.2014

3L mounted on beam-pipe

IBL - Rappel des contributions

Echelles CPPM

production et tests

Senseurs

Planaires LPNHE + LAL \rightarrow garde-ring réduit

Electronique

Chip FEI4 - CPPM

Design

Qualification: dose, SEU, GADC, temp., courant/tension

Construction - Assemblage

CPPM, LPNHE, LAL

Services - intégration dans ATLAS

Thermosyphon, analyse gaz sonar, mélange fluorocarbones CPPM Insertion LPSC

Suivi de production câbles LPSC + LAPP

Procédure de câblage intégrée LAPP

Distribution du liquide de refroidissement CO² LAPP

Software associé CPPM+LAPP

ATLAS Phase I

Préserver les seuils de déclenchement les plus bas possibles pour les études détaillées du boson de Higgs

Modes de désintégration "clé": H→4l, H→γγ, H→ττ

Production associée avec W/Z

 \rightarrow Seuils bas pour les objets inclusifs ou en paire: e, μ , τ , γ , malgré la haute luminosité et l'empilement

Principaux upgrades pour ATLAS en phase I IRFU Nouvelles chambres à muons (NSW) meilleur déclenchement μ et tracking à l'avant Fast Track Tigger (FTK) LPNHE Information tracking disponible dès le début (L2) du déclenchement ANR de Haut Niveau (HLT) \rightarrow Suppression de l'empilement basée sur les traces LAL Déclenchement calorimétrique EM LAPP Granularité accrue (facteur ~ 10) \rightarrow efficacité de déclenchement (turn on curve), LPSC réjection des jets (forme des gerbes EM vs HAD) **CPPM** TDAQ

Topologie des événements

Channel	Gain in acceptance (%)
H→ττ→eτ(had)	37
ZH→vvbb	47-72
H→WW*→evev	24
H→WW*→eνμν	12

LAr Phase I upgrade Amélioration du déclenchement

Système avec le menu de trigger de 2012 et les seuils du run I, extrapolé à 3.10^{34} Hz/cm² and $\sqrt{s}=14$ TeV

donnerait un taux de trigger de

270 kHz L1 EM (20kHz au run I)

Tours de trigger (TT) $\Delta\eta x \Delta \phi = 0.1 x 0.1$ Dominé par les jets

Phase I: signal amélioré vers L1Calo SuperCells (SC)

> Granularité en η augmentée Transmission de chaque couche de calorimètre Précision de numérisation affinée

Electron E=70 GeV

ATLAS Phase I - LAr: Segmentation et numérisation

L1 Rates [kHz]

10⁴

10³

10

10

10⁻¹

Run 2

15

Single EM trigger rate 20 kHz Seuils diminués par ~7 GeV

Echelle de numérisation Trigger Tower: 1 GeV SuperCells: 32/125 MeV pour strips/middle

30.01.2014

ATLAS Phase I: Electronique LAr

ATLAS Phase I à l'IN2P3: Frontend

Baseplane

Prototype en cours de fabrication (responsabilité LAL)

116 Backplanes à construire

PRR Fin 2016

Carte LTDB (LAr Trigger Digitiser Board): 40 MHz (LAL + LPSC)

Envoi des signaux analogiques à la carte historique TBB (L1 analogique) Digitise les signaux des SC, transmet par fibre optique hors de la caverne Carte démonstrateur (LAL+IRFU) en fabrication: carte-mère analogique ADC ASIC en développement (LPSC) ~120 LTDB à construire (USA, IN2P3,...)

PRR Fin 2015

ATLAS-Phase I - LAr Backend & démonstrateur

LDPB (LAr Digital Processing Board): Réception des signaux numériques du LTDB à 40 MHz: conversion ADC $\rightarrow E_T$

Format ATCA: carte porteuse équipée de 4 AMCs, IPMC,... AMC: coeur du processing (FPGA dernière génération) (LAPP+CPPM)

~120 cartes AMC à fabriquer (resp. LAPP)

PRR Fin 2015

Firmware: synchronisation, latence, précision sur l'énergie

Software online associé (LAPP)

Situation - Démonstrateur pour printemps 2014 Banc de test complet: mise en route en cours (système actuel). Puis installation progressive des différents éléments Baseplane, LTDB, LDPB, readout complet Décision en ~mai 2014: équiper un chassis FE complet sur ATLAS en juin ?

Design de la carte AMC pour la fin de l'année 2014

ATLAS-IN2P3 Phase I: Budget

Table présentée au CS-IN2P3 de juin 2012

0	bjet l	k€	2013	2014	2015	2016	2017	2018	
Fond de panier / LTDB / Numérie	seur	50	50	0	50	350	150	50	
Système I	OPS 🔰	200	50	50	-	300	350	50	
Т	otal 1	450							
Total calorimètrie argon liquide (2012-20)18) 6	656	650	108	783	3380	1570	0	
Total ATLAS (2012-20)18) 27	7180	4000	3360	4210	7360	4010	3110	
k€	Coût total IN2P3	2014	2	015	2016	20	017	2018	
Baseplane	375	15		40	160	1	60		
FE boards (layout, ADC)	250	0	1	00	100	Į	50		
BE	750	25	1	25	300	3	00		
Total	1375	40	2	265	560	5	10		

Table 25: LAr Phase-1 Upgrade summary CORE cost table in units o KCHF

PBS	ltem	Cost	2013	2014	2015	2016	2017	2018	
1.1	Front End electronics								
1.1.1	Baseplane	1076	-	100	438	538	-	-	
1.1.2	Layer Sum Boards	225	-	-	112	112	-	-	
1.1.3	LTDB	2958	-	500	979	979	500	-	
1.2	Optical Cables	592	-	-	-	296	296	-	
1.3	Backened electronics								
1.3.1	ATCA+shelves	40	-	-	10	10	20	-	
1.3.2	LDPB	2573	-	200	886	1086	400	-	
1.3.3	RTM	55	-	-	27	28	-	-	
1.3.4	TTC Optical Couplers	8	-	-	-	4	4	-	
1.3.5	In-shelf switches	46	-	-	-	23	23	-	
1.3.6	Receiver PC	14	-	-	-	7	7	-	
1.3.7	Controlling PC	5	-	-	-	3	2	-	
	Total	7590	-	800	2452	3086	1252	-	

Les développements pour la phase I sont en bonne voie. IN2P3 a pris des responsabilités pour cette phase.

CMS+ATLAS computing - Phase I & II

Post run I vers HL-LHC

Readout rate x10 (impact sur les ressources x10)

Pile-up x10 (impact sur les ressources » 10 avec les techno. d'aujourd'hui) Readout

La loi de Moore + mêmes ressources en €: OK Empilement: Effort majeur sur le software Optimisation traditionnelle Utilisation plus efficace des "single core" (micro-parallélisisme) "multi-core" (parallel framework)

Effort en cours dans les expériences

Partage des développements "HEP software collaboration"

CMS - Programme d'upgrade Phase II

Trigger/DAQ

- \rightarrow Tracking at L1 (hardware)
- \rightarrow L1 rate up to 1 MHz 10µs latency
- \rightarrow HLT output up to 10 kHz

Recall: about 70% of phase 2 upgrades costs are for phase 1 detectors that will become inoperational after 300-500 fb-1

Muon systems

- → Replace barrel DT reado
- → Complete CSC coverage with new technology considering GEM and advanced RPCs
- → Consider Muons tagging to $\eta \sim 4$

Replace HE/EE

- \rightarrow Longevity
- \rightarrow Consider to extend coverage up to $\eta \sim 4$
- \rightarrow Consider precise timing measurement

TDR in 2016-2017

Replace Tracking

- → Longevity occupancy
- → Implement Track Trigger in L1
- \rightarrow Consider to extend coverage up to $\eta \sim 4$

30.01.2014

Contributions de CMS-IN2P3 Programme d'upgrade de phase II

Estimation préliminaire du coût pour CMS – Phase 2 ~ 270 MChF Contribution espérée pour l'IN2P3 – Phase 2 ~ 10 MChF

Tracker

« track trigger » et DAQ ^{1) 2)} Electronique: concentrateur de données ²⁾ Structure mécanique des bouchons ²⁾

R&D Phase 2⁻

Calorimètres

Electronique du tonneau ^{2) 3)} Calorimètres bouchons (endcaps) ^{2) 3)}

Forward Muons (High rates GRPCs) ²⁾

R&D Calcul parallèle (GPUs ..)³⁾ (financé par P2IO, Ph. Busson et al.) R&D Capteurs Diamantés¹⁾ (financé par l'ANR, "MONODIAM-HE", J.-M. Brom) 1) IPHC 2) IPNL 3) LLR

ATLAS Phase II (à l'IN2P3)

Améliorations prévues pour la phase II cruciales pour mener à bien le programme HL-LHC (« priorité numéro 1 de la physique des particules en Europe »

Calorimétrie: lecture des données à 40 MHz

Argon liquide: remplacement complet de l'électronique de lecture (vieillissement, radiations) - Continuation naturelle de la Phase I Tuiles: Remplacement complet de l'électronique de lecture (vieillissement, radiations), lecture électronique intégrée & meilleure structur<u>e des tiroirs</u>

Détecteur interne: activité foisonnante à l'IN2P3 avec de nombreuses pistes innovantes et à la pointe. Soutien important dès aujourd'hui pour contribuer significativement à la rédaction du TDR.

Géométrie: à la IBL, échelles alpines Senseurs: planaires, HV-CMOS Electronique: en particulier 65 nm

ATLAS: Résumé demandes budgétaires

Table présentée au CS-IN2P3 de juin 2012

Element (phase)	k€	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
Calo Construction (I)	1450	100	40	265	560	510	100				
Calo R&D (II)	298	80	68	50	50	50					
Calo Construction (II)	3020						750	1050	870	250	100
Tracker-pixel R&D (II)	2620	420	440	440	440	440	440				
Tracker Constr. (II)	10000					500	1500	3000	3000	1500	500
Projets Communs(II)											
et TDAQ	1500					500				500	500
Total	18888	600	558	540	1140	1990	2790	4050	3870	2250	1100
ETP-CDD											
construction	Phases I & II pour ATLAS-IN2P3										
				1	3	5	5	4	8	7	5

Pre-conclusion: HL-LHC est la priorité 1 en Europe

http://council.web.cern.ch/council/en/EuropeanStrategy/esc-e-106.pdf

c) The discovery of the Higgs boson is the start of a major programme of work to measure this particle's properties with the highest possible precision for testing the validity of the Standard Model and to search for further new physics at the energy frontier. The LHC is in a unique position to pursue this programme. *Europe's top priority should be the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with a view to collecting ten times more data than in the initial design, by around 2030. This upgrade programme will also provide further exciting opportunities for the study of flavour physics and the quark-gluon plasma.*

Conclusion: CMS + ATLAS upgrades

La préparation de la phase I de LHC a commencé pendant LS1 et continue jusqu'à la fin de LS2 (2019):

√s=13-14 TeV,

dL/dt ~ 2.10³⁴ Hz/cm² \rightarrow empilement ~50 evts/croisement

 $\int L.dt = 300 \text{ fb}^{-1}$

Les financements pour CMS & ATLAS sont ± couverts ds les deux expériences.

A l'IN2P3, le financement de la phase I est en train d'être engagé (les MoU sont en préparation dans les expériences)

```
CMS 2 M€
```

ATLAS 1.5 M€

La préparation du projet de phase II du LHC a aussi commencé

√s=13-14 TeV

dL/dt ~ 5.10³⁴ Hz/cm² \rightarrow empilement ~140 evts/croisement

 $\int L.dt = 3000 \text{ fb}^{-1}$

Les TDR sont prévus pour 2016-2017.

Mais le soutien financier de l'IN2P3 est trop faible et les équipes ne peuvent pas s'impliquer à un niveau suffisant pour la préparation des TDR et les ébauches de prise de responsabilité.

Les groupes CMS & ATLAS sont inquièts quant à cette situation.

Tracker Upgrade – Phase 2

Electronics:

Concentrator

ipnl

receive data from 8 CBC modules transmit trigger/data via GBT/GLIB modules after sparsification, in synchronous, asynchronous or pseudo-asynchronous mode

"L1 Track-trigger"

Principle: performing a fast track reconstruction using associative memory chips for pattern recognition and FPGA-based fit (eg Hough-transform) for track-fit constraints: 40MHz input rate and ~5µs latency

Develop hardware test benches (e.g. evaluate latency) Develop new AM chips

ANR "FastTrack" (CMS IPNL/ATLAS LPNHE) for 3 years (490 k€) + 20 k€ labex LIO

Tracker DAQ – Phase 2

R&D pour le futur système DAQ pour le trackerL. Gross et al., IPHCSystème μTCA

- Développement du banc de test DAQ pour CMS Compatible avec les futurs hybrides 8xCBC-2; crates uTCA; cartes FC7
 - Conception de l'électronique DAQ
 - Système de DAQ multi-crates μTCA Mise en temps; centralisation des données
 - Banc test (au CERN) dédiés aux modules PT
 - Banc test (au CERN) pour test du futur système DAQ Core DAQ firmware & software; Concentrateur; connection via central DAQ; générateur de données de « trackTrigger »
 - Nouveaux modules, nouveaux chips CBC, évolutions du concentrateur, etc.

2015

Electronique ECAL – Phase 2

Contributions au système actuel, e.g. cartes FE, cartes Trigger : IPNL & LLR

"kick-off meetings" en novembre/ décembre 2013 ! Discussions CMS-IN2P3/IRFU pour une future contribution de phase 2 Discussions CMS pour le remplacement de l'électronique du tonneau ECAL

On-going discussions in CMS:

Consider ugrade of the VFE / FE electronics (« analog »)

Motivations: Better timing; kill spikes in analog electronics; Transfer all data – all samplings (40 MHz) per crystal

Upgrade of the off-detector electronics (« digital »)

Motivations: Re-built crystal energy / "clusters" for trigger selection Exploit full calorimeter granularity Combine calorimeter and track-trigger information

Yves Sirois - CMS IN2P3

Nouveaux calorimètres avant – Phase 2

Discussion en cours pour une future contribution phase 2 IPNL & LLR CMS: Remplacement total ou partiel des calorimètres vers l'avant Option 1: Shashlik-like Option 2: DREAM-like Option 3: High-granuarity

• R&D - calorimètre vers l'avant à haute granularité (inspiré de ILC) :

Section avant ECAL: 25 X0 Pb/Si HCAL-1: 4 λ Cu/Si

^{8 λ} - Section arrière HCAL-2: 4 λ Cu/Si

> Protagonistes: CERN, IC London, Minnesota ...

ipl Nouvelles stations μ vers l'avant

Proposal to equip some endcap muons station with 'high rate' GRPCs

- GEM to equip 1st muon endcap stations RE1/1 and RE2/1
- GRPC to equip RE3/1 and RE4/1 stations

Multi-GRPCs for timing purpose (<50 ps)

R&D on low resistive glasses

RE1/1 chamber built and successfully tested using electronics developed for ILC

Yves Shoed other the measurement precision (<< ns)