CS IN2P3 30 – 31 janvier 2014 CNRS / Paris

Evolution de la contribution française à l'*upgrade* de LHCb

R. Le Gac pour le groupe LHCb France

CPPM, AMU et CNRS/IN2P3

Document de référence

Evolution de la contribution française à l'upgrade de LHCb, CSIN2P3/LHCb/ 30 janvier 2014

Plan

- Motivations
- Evolution du projet upgrade de LHCb
- Evolution de la contribution française
- Conclusions

Motivations

La physique des saveurs

- L'expérience LHCb est dédiée à l'étude des processus qui changent de saveur et des désintégrations très rares dans les secteurs de la beauté et du charme :
 - Comprendre l'origine de la hiérarchie observée pour les masses et les couplages des quarks.
 - Révéler de nouvelles sources qui brisent la symétrie de saveur.
- La méthode est basée sur :
 - les mesures d'observables ayant peu d'incertitudes théoriques ;
 - la comparaison de ces mesures avec les prévisions afin de mettre en évidence des déviations éventuelles ;
 - le contrôle des erreurs systématiques en utilisant les données.

Le Top 10 des observables

γ from tree ($B \rightarrow DK$,)	LHCb	Belle II
V _{ub} from exclusive semi-leptonic B decays		Belle II
$B_{s, d} \rightarrow l^+ l^-$	LHCb	Atlas, CMS
CP violation in B_s mixing	LHCb	Atlas
$B \rightarrow K^{(*)} l^+ l^-$, $\nu \nu$	LHCb	Belle II, CMS
$B \rightarrow \tau \nu, \mu \nu$		Belle II
$K \rightarrow \pi \nu \nu$		NA62, KOTO, ORKA
CP violation in charm	LHCb	Belle II
Lepton flavor violation		MEG 3

[G. Isidori, European Strategy Preparatory Group, Krakow 2012]

Leurs mesures nécessitent l'étude d'un grand nombre de systèmes (K, D, D_s, B, B_s, B_c, $\Lambda_{\rm b}$, ...) et d'états finals.

D'un point de vue phénoménologique

Les observables se décomposent :

$$A = A_0 \left[\begin{array}{c} \mathbf{c}_{\mathrm{SM}} \frac{1}{\mathbf{M}_{\mathrm{W}}^2} + \mathbf{c}_{\mathrm{NP}} \frac{1}{\Lambda^2} \right]$$

- Les expériences passées et présentes ont montré que :
 - les processus qui changent de saveur sont décrits par le mécanisme CKM du Modèle standard ;
 - les sources pouvant briser la symétrie des saveurs, se couplant fortement aux quarks, sont exclues à l'échelle du TeV ;
 - la structure en saveur de la Nouvelle physique, si elle existe à l'échelle du TeV, est très particulière (MFV) ;
 - les processus qui changent de saveur imposent des contraintes fortes aux modèles de Nouvelle physique.

Les attentes

- Des déviations par rapport aux prévisions du Modèle standard sont toujours possibles, mais elles devraient être petites ≤ O(10%).
- La stabilisation de la masse du « boson de Higgs » à 125 GeV autorise des processus au-delà du Modèle standard à des échelles de masse bien supérieures au TeV.
- Dans ce contexte, la meilleure stratégie expérimentale consiste à mesurer le plus précisément possible les observables ayant peu d'incertitudes théoriques.

Telles sont les motivations pour l'upgrade de LHCb.

Evolution du projet upgrade de LHCb

Les points clés

- Les études d'un grand nombre d'états finals, dans des systèmes très différents, avec une grande efficacité tout en minimisant les systématiques, imposent :
 - la lecture de l'ensemble du détecteur à la fréquence de croisement des faisceaux, 40 MHz, au lieu de 1 MHz ;
 - la sélection des événements à l'aide d'un système de déclenchement logiciel utilisant des algorithmes flexibles et sophistiqués.
 Un tel *trigger* sera le plus proche possible des sélections *offline*.
- En conséquence, l'ensemble de la chaîne de lecture et tous les détecteurs au silicium devront être remplacés (ASIC limité à 1 MHz).

Les conditions de fonctionnement

Maximiser la statistique et minimiser l'empilement des événements.

\sqrt{s}	14 TeV
Luminosité instantanée constante	2 ×10 ³³ cm ⁻² s ⁻¹
Séparation entre 2 croisements	25 ns
Luminosité intégrée en moins de 10 ans	≥ 50 fb ⁻¹

Profil d'acquisition de luminosité intégrée

[ECFA High Luminosity LHC Experiments report, octobre 2013]

(*) Ancien calendrier du LHC qui a été modifié en décembre 2013.

Sensibilités statistiques

Similaires ou inférieures aux incertitudes théoriques :

Observable	Upgrade [50 fb ⁻¹] σ_{stat} / expected	Theory uncertainty $\sigma_{\rm theo}$ / expected
$\phi_{\rm s}(B_{\rm s} \rightarrow J/\psi \phi)$	25%	8%
q_0^2 de $A_{\rm FB}(B^0 \rightarrow K^{*0} \mu \mu)$	2%	7%
$\mathbf{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)$	5%	8%
$\mathbf{B}(B^{0} \rightarrow \mu^{+} \mu^{-}) / \mathbf{B}(B_{s}^{0} \rightarrow \mu^{+} \mu^{-})$	40%	5%
$\gamma(B \rightarrow D^{(*)}K^{(*)})$	2%	negligible

Voir plus d'observables dans LHCb-PUB-2013-015

Comparaison avec les autres expériences

[M.-H Schune, High Luminosity LHC Experiments Workshop, 2013]

Meilleure performance avec beaucoup moins de luminosité intégrée

Le calendrier de la préparation du projet

Mar. 2011	Lettre d'intention
Mai 2012	Framework Technical Design Report
Nov. 2012	Approbation par CERN Reseach Board
Nov. 2013	TDR détecteur de vertex TDR identification des particules
Fév. 2014	TDR trajectographe
Avril 2014 (RRB)	Signature des TDRs par les agences
Juin 2014	TDR Trigger & Online
Juin 2018 – déc 2019 (LS2)	Modification du détecteur

Une seule phase d'upgrade installé pendant l'arrêt LS2 du LHC.

Les évolutions du détecteur

(*) French contributions

Détecteur de vertex à pixels

- 26 plans de mesure
- Pixels 55×55 µm²
- ▶ 41×10⁶ canaux
- Rayon interne 3,5 cm (5,5)
- Fluence 8,5×10¹⁵ n_{eq}cm² pour une *L* intégrée de 50 fb⁻¹
- Refroidissement à -20 °C par évaporation de CO₂ dans des micro-canaux

Vue de dessus et de dessous d'un module

Performance du détecteur de vertex

Résolution en paramètre d'impact à 2×10^{33} cm⁻²s⁻¹ et $\sqrt{s} = 14$ TeV pour les traces traversant le détecteur, en **noir** pour le détecteur actuel et en **rouge** pour le détecteur à pixels (épaisseur *RF foil* 250 µm).

Performance meilleure que le détecteur actuel.

Identification des pions et des kaons

- L'identification des pions et des kaons est effectuée par les RICH1, 2 comme dans la version actuelle.
- RICH1 sans aérogel.

Nouveau système optique, pour agrandir l'image des anneaux Cerenkov dans le plan focal, afin de réduire l'occupation des détecteurs de photons.

 Les détecteurs de photons seront des MaPMTs, lus par un ASIC dédié (CLARO). (Nouvelle version des HPDs comme solution de secours.)

Performance identification pions / kaons

En **noir** les performances des RICHs actuels à 4×10^{32} cm⁻²s⁻¹ En **vert**, celles des nouveaux RICHs, à 2×10^{33} cm⁻²s⁻¹

Performance similaire au détecteur actuel.

La mesure des traces dans LHCb et évolution du trajectographe

Trajectographe à fibres scintillantes

- 4 plans détection / station
- 12 modules par plan
- Un module est composé de fibres de 250 µm de diamètre arrangées en 5 couches

- Détection des photons \rightarrow SiPM
- 4608 SiPMs connectés à des ASICs dédiés (PACIFIC)
- 590×10³ canaux
- SiPM refroidi à -40 °C

Performance pour la reconstruction des traces

Les performances pour la reconstruction des traces traversant le détecteur, à 2×10^{33} cm⁻²s⁻¹, sont similaires voire meilleures que celles obtenues avec le détecteur actuel.

Evolution du système d'acquisition (32 Tbits/s)

Le défi principal est de trouver une solution économique. Deux architectures sont envisagées :

Fat-core event builder

Uniform event builder

La revue de l'architecture est prévue le 25 février 2014 au CERN.

Coût de l'upgrade de LHCb

	Coût [MCHF]
Détecteur de vertex	5,7
RICH 1 & 2	11,6
UT	6,2
Trajectographe à fibre	13,5
Calorimètres	1,9
Muon	1,7
LLT + pré-série carte de lecture	0,9
Projets communs	15,6
TOTAL	57

Marges pour imprévus au niveau de 15 %.

Evolution de la contribution française

Contributions françaises

L'ensemble des laboratoires LHCb France sont impliqués dans la préparation de l'upgrade de LHCb : CPPM, LAL, LAPP, LPC et LPNHE :

Calorimètres

Trajectographe à fibres scintillantes

Carte de lecture à 40 MHz

Low Level Trigger

Responsabilités :

Coordinateur de l'upgrade des calorimètres	F. Machefert
Coord. de l'électronique du trajectographe à fibres	H. Chanal
Coord. de la simulation du trajectographe à fibres	Y. Amhis
Coordinateur du LLT	P. Robbe
Coordination de la carte de lecture	JP. Cachemiche, R. Le Gac
Coordination des micro-codes pour la carte de lecture	S. T'Jampens, G. Vouters
Coordinateur du Data processing	R. Le Gac

Les calorimètres

Les partenaires :

Espagne	Univ. Barcelona, Univ. La Salle
France	LAL, LAPP
Russie	IHEP, INR, ITEP

La contribution française :

Conception et réalisation des cartes FE et de leurs contrôleurs	LAL
Développement des micro-codes pour les cartes de lecture	LAPP
Mécanique pour remplacer les modules internes (LS3)	LAPP

Les cartes front-end pour les calorimètres

Caractéristiques :

- 270 cartes FE
- 32 voies / carte
- 4 ASIC (Espagne) + ADC
- 4 FE-PGAs : traitement numérique du signal
- 1 TRIG-PGA : construction et sélection des amas 2×2
- 1 CTRL-PGA : synchronisation et alignement en temps
- 5 GBTs : sortie sérielle optique

Calendrier :

- Prototypes 2014 2015
- Production 2016 2017

Prototype de la carte FE

Le trajectographe à fibres scintillantes

Les partenaires :

Allemagne	Univ. Aachen, Dortmund, Heidelberg, Rostock
Brésil	CBPF Rio de Janeiro
Espagne	ICC Barcelona, Univ. Valence
France	LAL, LPC, LPNHE
Pays-Bas	NIKHEF
Royaume Unis	Imperial College London
Russie	IHEP, INR, ITEP, NRC KI, PNPI
Suisse	CERN, EPFL

La contribution française :

Conception et réalisation ASIC (PACIFIC) et des cartes FE	LPC
Acquisition des données et développement micro-codes	LPNHE
Algorithme de reconstruction des traces et simulation	LAL, LPC, LPNHE

Le composant PACIFIC

Prototype des blocs élémentaires

Caractéristiques :

- 128 canaux
- − Deux gammes de dynamique : 750 fC → 7,7 pC ou 3,3 → 30,8pC
- Mise en forme du signal, intégration et digitisation à 40 MHz
- Résolution ADC 6 bits
- Technologie IBM 130 nm

- Calendrier
 - Prototype 2014 2015
 - Production 2016

Les cartes FE du trajectographe

Caractéristiques :

- 576 Cartes FE
- 8 SiPM /cartes (1024 voies)
- 8 PACIFIC
- 8 FPGA : clusterisation et suppression de zéro
- 2 FPGA : concentrateur
- $\leq 8 \text{ GBT}$: sortie optique

Calendrier

- Prototype 2014 2016
- Production 2017 2018

La carte de lecture à 40 MHz

Les partenaires :

France	CPPM, LAPP
Italie	Bologna
Suisse	CERN

La contribution française :

Conception, pré-série, production et micro-codes très proches du hardware	CPPM
Coordination des micro-codes et développement micro-code générique	LAPP

La version AMC /ATCA (baseline)

Caractéristiques :

- 125 cartes mères ATCA
- 500 cartes filles AMC
- 36 entrées et 36 sorties sérielles à 10 Gbit/s par AMC
- 1 FPGA Stratix V GX / AMC

Calendrier :

- Prototype 2014
- Production 2015 2016

AMC40	ARD
AMC40	ER BO/
AMC40	A MOTH
AMC40	ATC/

Carte AMC dans un système MiniDAQ

Architecture du FPGA en mode acquisition

Le système de déclenchement LLT

Le LLT est le descendant du LO.

Il agit comme une sécurité pour limiter, si nécessaire, le taux à l'entrée de la ferme de calcul.

- Migration du L0 dans la nouvelle infrastructure en utilisant les cartes de lecture à 40 MHz.
- Partenaires : CPPM, LAL, LAPP, LPC
- Calendrier : développement des micro-codes 2016 – 2018

Ressources humaines allouées

En bonne adéquation avec les besoins.

Ressources financières

		Coût [$\mathrm{kCHF}]$
Calorimètres		$1 \ 286$	
	Front-end		339
	Controlleurs		58
	Liens optiques		323
	Cartes de lecture		566
Trajectographe à fibres		2 198	
	ASIC		1 185
	Front-end		547
	14 Cartes de lectures		466
Low Level Trigger		343	
	LLT-Calo		203
	LLT-Muon		117
	LLT-DU		22
Pré-série cartes de lecture		580	
Projets communs (9.7%)		1 514	
Complément R&D		250	
Total		6 170	

- Demande similaire à celle présentée en juin 2012.
- Marges pour imprévus au niveau de 15 %.

Plan de financement de l'IN2P3

- L'IN2P3 nous propose un financement de 4 M€ (5 MCHF) pour la période 2014 – 2018.
- Il devra couvrir les composants essentiels à l'upgrade, notre contribution aux projets communs et le complément de R&D.
- Un accompagnement est envisageable au-delà de 2019.

Proposition de financement

Sur la base des hypothèses suivantes :

- l'ensemble des cartes de lectures de rechange est financé à partir de 2019 ;
- les marges pour imprévus sont réduites ici de 15 à 7%.

Coût [kCHF]	2014-2018	2019
Calorimètres	1 115	95
Trajectographe à fibres	1657	425
Low Level Trigger	180	135
Pré-série cartes de lecture	485	
Projets commun	1 514	
Complément R&D	250	
Total	5 200	655

Conclusions

- Le programme de physique de l'upgrade de LHCb est au cœur de la physique des particules. Il fait partie de l'exploitation à long terme du LHC.
 Il est un des axes prioritaires de la Stratégie européenne.
- Les performances du détecteur actuel et la pureté des échantillons déjà analysés, montrent que des mesures de précision sont faisable dans LHCb.
- La contribution française s'inscrit dans la continuité de ce que nous avons produit pour LHCb et s'organise autour des systèmes essentiels à l'upgrade.
- Le plan de financement de l'IN2P3 devrait permettre de fabriquer l'ensemble des systèmes requis au démarrage en 2020 et de payer notre contribution aux projets communs.
- Un accompagnement sera nécessaire au-delà de 2019 pour financer les composants de rechange.

Backup

LHC Schedule – December 2013

Trigger yield

Statistical sensibilities

Table 3: Statistical sensitivities of the LHCb upgrade to key observables. For each observable the expected sensitivity is given for the integrated luminosity accumulated by the end of LHC Run 1, by 2018 (assuming 5 fb^{-1} recorded during Run 2) and for the LHCb Upgrade (50 fb^{-1}). An estimate of the theoretical uncertainty is also given – this and the potential sources of systematic uncertainty are discussed in the text.

Type	Observable	LHC Run 1	LHCb 2018	LHCb upgrade	Theory
B_s^0 mixing	$\phi_s(B^0_s \to J/\psi \phi) \text{ (rad)}$	0.05	0.025	0.009	~ 0.003
	$\phi_s(B^0_s \to J/\psi \ f_0(980)) \ (rad)$	0.09	0.05	0.016	~ 0.01
	$A_{ m sl}(B^0_s)~(10^{-3})$	2.8	1.4	0.5	0.03
Gluonic	$\phi_s^{\text{eff}}(B_s^0 \to \phi \phi) \text{ (rad)}$	0.18	0.12	0.026	0.02
$\operatorname{penguin}$	$\phi_s^{\text{eff}}(B_s^0 \to K^{*0} \bar{K}^{*0}) \text{ (rad)}$	0.19	0.13	0.029	< 0.02
	$2\beta^{\text{eff}}(B^0 \to \phi K^0_S) \text{ (rad)}$	0.30	0.20	0.04	0.02
Right-handed	$\phi_s^{\text{eff}}(B_s^0 o \phi \gamma)$	0.20	0.13	0.030	< 0.01
currents	$ au^{ m eff}(B^0_s o \phi \gamma)/ au_{B^0_s}$	5%	3.2%	0.8%	0.2%
Electroweak	$S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.04	0.020	0.007	0.02
penguin	$q_0^2 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	10%	5%	1.9%	$\sim 7\%$
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 { m GeV}^2/c^4)$	0.14	0.07	0.024	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	14%	7%	2.4%	$\sim 10\%$
Higgs	$\mathcal{B}(B^0_s \to \mu^+ \mu^-) \ (10^{-9})$	1.0	0.5	0.19	0.3
$\operatorname{penguin}$	$\mathcal{B}(B^0 ightarrow \mu^+ \mu^-) / \mathcal{B}(B^0_s ightarrow \mu^+ \mu^-)$	220%	110%	40%	$\sim 5~\%$
Unitarity	$\gamma(B \to D^{(*)}K^{(*)})$	7°	4°	1.1°	negligible
triangle	$\gamma(B^0_s o D^{\mp}_s K^{\pm})$	17°	11°	2.4°	negligible
angles	$eta(B^0 o J/\psi K^0_S)$	1.7°	0.8°	0.31°	negligible
Charm	$A_{\Gamma}(D^0 \to K^+ K^-) \ (10^{-4})$	3.4	2.2	0.5	—
CP violation	$\Delta A_{CP} \ (10^{-3})$	0.8	0.5	0.12	_

VELO IP resolution at 4×10³²cm⁻²s⁻¹

Influence of the RF foil thickness

Figure 32: Impact parameter resolution in x (red) for the upgrade VELO. The nominal thickness of the RF foil is 0.25 mm. Three additional RF foil thicknesses (0.167, 0.083 and 0 mm) are shown in orange, green and blue respectively. The light grey histogram shows the relative population of *b*-hadron daughter tracks in each $1/p_{\rm T}$ bin.

Pions and kaons identifications

LHCb RICH 1 occupancy at 4×10³²cm⁻²s⁻¹

50

Long track definition

Uniform event builder

- L'assemblage des événements est effectué par des serveurs et un routeur bi-directionel de grande bande passante.
- Le serveur contient la carte de lecture PCIe40.
- Les données sont transférées à la RAM via le bus PCI Express.

Le format de la carte de lecture est PCIe au lieu de AMC/ATCA.

FE

La revue de l'architecture est prévue le 25 février 2014 au CERN.

AMC40

ATCA40

Spending profile

Phd equivalent

2014	PhD eq. total/ funding auth.	%
BRAZIL	18	4.2
FRANCE	41	9.7
BMBF GERMANY	16	3.8
MPI, MPG, GERMANY	6	1.4
IRELAND	1	0.2
INFN ITALY	77	18.2
NETHERLANDS	17	4.0
P. R. CHINA	4	0.9
POLAND	11	2.6
HHNIPNE ROMANIA	5	1.2
RUSSIA	33	7.8
SPAIN	17	4.0
SWITZERLAND	25	5.9
TURKEY	1	0.2
UKRAINE	3	0.7
UK	75	17.7
USA	17	4.0
CERN	57	13.4
TOTAL	424	100.0

Common Projects

Common Electronics	2.5 MCHF
General Infrastructure	2.5 MCHF
Online System	10.7 MCHF
TOTAL	15.7 MCHF

Scenario 3.5 M€ tous compris (4 375 kCHF)

Faisabilité de l'upgrade LHCb est très compromis !

Architecture Online	ATCA	PCI – No LLT
Marge pour imprévus	7 %	10 - 12 %
Demandes IN2P3	5 855 kCHF	5 540 kCHF
Détecteurs	3 436 kCHF	3 256 kCHF
Carte de lecture de rechange	655 kCHF	520 kCHF
Sous-total CORE	4 095 kCHF	3 776 kCHF
Disponible CORE	2 611 kCHF	
Couverture détecteur	76 %	80 %
Couverture carte de lecture de rechange	0 %	0 %
Réduction coût du projet	-40 % -1 484 kCHF	-30 % - 1 165 kCHF
Exemple d'abandon	CALO + LLT	CALO
Couverture fare share	63 %	

Scenario 4 M€ tous compris (5 MCHF)

Faisabilité de l'upgrade LHCb est compromis !

Architecture Online	ATCA	PCI – No LLT
Marge pour imprévus	7 %	10 - 12 %
Demandes IN2P3	5 855 kCHF	5 540 kCHF
Détecteurs	3 436 kCHF	3 256 kCHF
Carte de lecture de rechange	655 kCHF	520 kCHF
Sous-total CORE	4 095 kCHF	3 776 kCHF
Disponible CORE	3 236 kCHF	
Couverture détecteur	94 %	100 %
Couverture carte de lecture de rechange	0 %	0 %
Réduction coût du projet	-20 % -859 kCHF	-15 % - 540 kCHF
Exemple d'abandon	FE+ RO du FT	RO du CALO
Couverture fare share	81 %	