ILC Detector Related Activities at IN2P3: Introduction and Project Overview

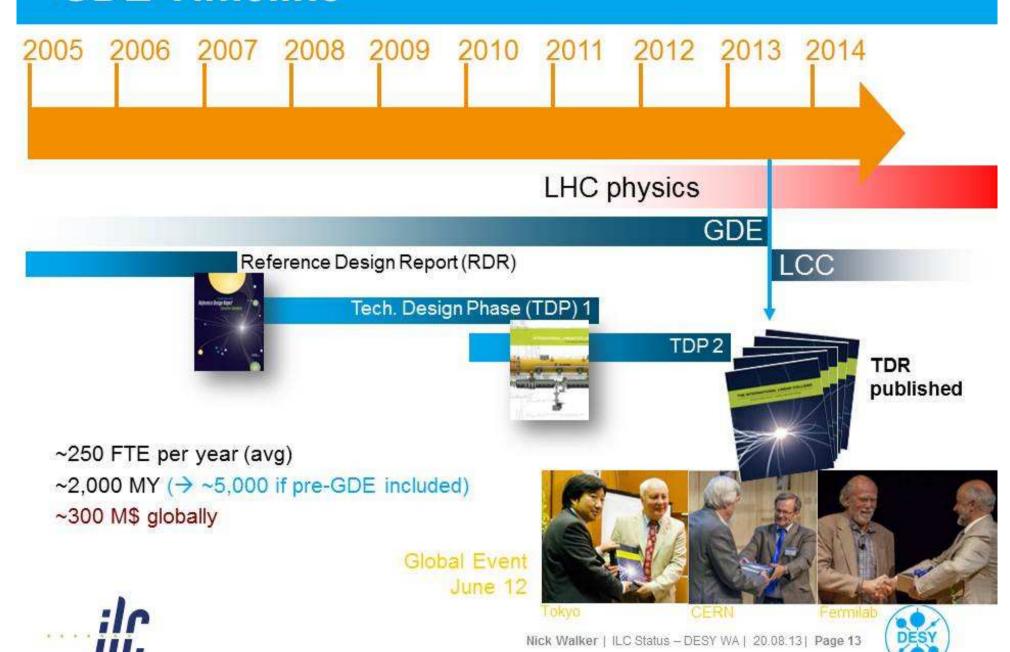
M. Winter (IPHC-Strasbourg)

on behalf of the IN2P3 ILC-detector groups: IPHC, IPNL, LAL, LAPP, LLR, LPCC, LPNHE, LPSC, OMEGA

CONSEIL SCIENTIFIQUE DE L'IN2P3, Paris, 30 & 31 Janvier 2014

Outline

- ILC project
- ILC running parametres and conditions
- Selected physics motivations
- Overview of detector concepts
- IN2P3 areas of activities
- Summary


- Main sources: B. Barish & J. Brau: *The International Linear Collider*, arXiv: 1311.3397v1 (physics.acc-ph), 14 Nov. 2013
 - ILC Technical Design Report, 5 vol. (2013), CERN-ATS-2-13-037
 - D.M. Asner et al.: ILC Higgs White Paper, arXiv:1310.0763v2 [hep-ph] 23 Oct. 2013
 - D.M. Asner et al.: ILC Top-quark White Paper, arXiv:1307.8265v3 [hep-ex] 30 Dec. 2013

The ILC Project: Prominent Aspects

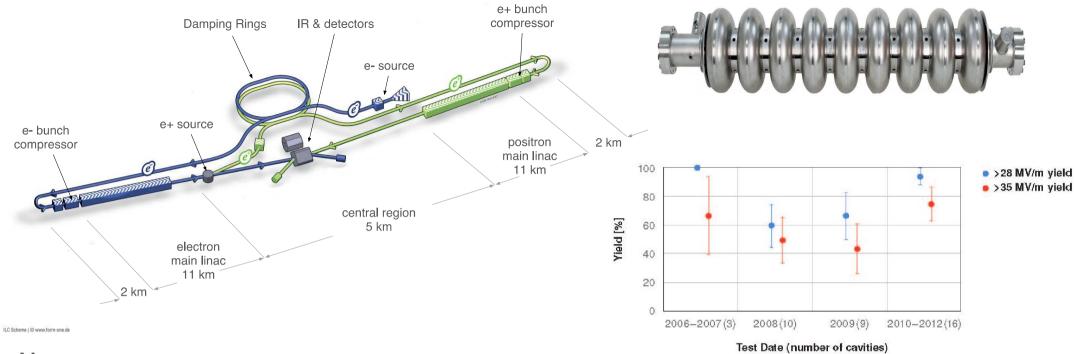
• ILC BASIC PARAMETRES:

- $_{*}$ e $^{+}$ e $^{-}$ collisions at a tunable c.m. energy of 200 to 500 GeV, extendable to \sim 1 TeV
- * Luminosity \gtrsim O(10¹⁴) $cm^{-2} \cdot s^{-1}$ (\sim 10³ \times SLC)
- * Both beams with tunable polarisation
- Machine, detector and physics studies performed since the '90s:
 - * R&D on accelerator has demonstrated its feasibility :
 Technical Design Report (TDR) delivered in Dec. 2012 → officel pub. in June 2013
 - $_*$ R&D on experiments (detectors) has \pm demonstrated their feasibility : Detailed Baseline Design (DBD) delivered in February 2013
 - * Physics potential reliably evaluated
- Long range world wide coordinated effort :
 - * Global Design Effort (GDE) until 2013 (chairman: B. Barish/CalTech)
 - * Linear Collider Collaboration (LCC) since February 2013 (chairman: L. Evans/CERN)

GDE Timeline

The ILC Project: The International Context

THE SITUATION IN JAPAN :


- * Japan has been very proactive in promoting the ILC to be built in the country
- * Japanese government is examining how it could host the ILC
 - Site has been decided : Kitakami mountains in North of Japan ▷
 - Team of Diet members examining ILC issues since 2008
 - Recently: government has announced that it
 will create its own ILC-budget for FY'14

THE SITUATION OUTSIDE OF JAPAN :

- * The perspective of an ILC in Japan was integrated in the 2013 update of the EU strategy for HEP (statement Nr.3)
- * Countries getting contacted by Japanese gvt representatives
 - discussions will start soon on possible contributions
- st Final decision for constructing ILC (or not ...) expected in \sim 3-5 years
- Start of physics expected by the end of next decade


Overview of the ILC Machine

- Machine technological maturity :
 - All major technical problems solved, e.g. cavity gradient, quality factor & industrial yield
 - But R&D still needed to improve & optimise the machine design realism and to reduce the cost
 - IN2P3 accelerator groups strongly involved in cavity powering (klystrons/couplers),
 while CEA strongly involved in cryomule production (XFEL)
 - IN2P3 groups involved in beam instrumentation close to IP
- ullet XFEL LINAC (\cong 1/10 ILC LINAC) UNDER CONSTRUCTION AT DESY, BASED ON SCRF CAVITIES PROVIDING A GRADIENT (\sim 25 MV/M) ADAPTED TO ILC UNTIL \sim 350 GeV

European XFEL @ DESY

Institute	Component Task			
CEA Saclay / IRFU, France	Cavity string and module assembly; cold beam position monitors			
CNRS / LAL Orsay, France	RF main input coupler incl. RF conditioning			
DESY, Germany	Cavities & cryostats; contributions to string & module assembly; coupler interlock; frequency tuner; cold-			
	vacuum system; integration of superconducting magnets; cold beam-position monitors			
INFN Milano, Italy	Cavities & cryostats			
Soltan Inst., Poland	Higher-order-mode coupler & absorber			
CIEMAT, Spain	Superconducting magnets			
IFJ PAN Cracow, Poland	RF cavity and cryomodule testing N. \			
BINP, Russia	Cold vacuum components			

The ultimate 'integrated systems test' for ILC.

Commissioning with beam 2nd half 2015

N. Walker (DESY) - ILC Worldwide Event - CERN - 12 June 2013

Machine Parametres from 200 to 1000 GeV

- Staged operation of the machine, e.g. 250 GeV \rightarrowtail 350/500 GeV \rightarrowtail 500/350 GeV
- Luminosities calculated with several conservative assumptions (e.g. power)

			Baseline	e 500 GeV I	Machine	1st Stage	L Upgrade 500	$E_{ m CM}$ Upgrade	
Centre-of-mass energy	$E_{ m CM}$	GeV	250	350	500	250		A 1000	B 1000
Collision rate	$f_{ m rep}$	Hz	5	5	5	5	5	4	4
Electron linac rate	$f_{ m linac}$	Hz	10	5	5	10	5	4	4
Number of bunches	$n_{ m b}$		1312	1312	1312	1312	2625	2450	2450
Bunch population	N	$\times 10^{10}$	2.0	2.0	2.0	2.0	2.0	1.74	1.74
Bunch separation	$\Delta t_{ m b}$	ns	554	554	554	554	366	366	366
Pulse current	$I_{ m beam}$	mA	5.8	5.8	5.8	5.8	8.8	7.6	7.6
Main linac average gradient	$G_{ m a}$	${ m MV}{ m m}^{-1}$	14.7	21.4	31.5	31.5	31.5	38.2	39.2
Average total beam power	$P_{ m beam}$	MW	5.9	7.3	10.5	5.9	21.0	27.2	27.2
Estimated AC power	$P_{ m AC}$	MW	122	121	163	129	204	300	300
RMS bunch length	$\sigma_{ m z}$	mm	0.3	0.3	0.3	0.3	0.3	0.250	0.22
Electron RMS energy spread	$\Delta p/p$	%	0.190	0.158	0.124	0.190	0.124	0.083	0.08
Positron RMS energy spread	$\Delta p/p$	%	0.152	0.100	0.070	0.152	0.070	0.043	0.04
Electron polarisation	$P_{-}^{1/1}$	%	80	80	80	80	80	80	80
Positron polarisation	P_{+}	%	30	30	30	30	30	20	20
Horizontal emittance	$\gamma\epsilon_{ ext{x}}$	μm	10	10	10	10	10	10	10
Vertical emittance	$\gamma\epsilon_{ ext{y}}$	nm	35	35	35	35	35	30	30
IP horizontal beta function	$eta_{\mathbf{x}}^*$	mm	13.0	16.0	11.0	13.0	11.0	22.6	11.
IP vertical beta function	$eta_{\mathbf{y}}^*$	mm	0.41	0.34	0.48	0.41	0.48	0.25	0.2
IP RMS horizontal beam size	σ_{x}^{*}	nm	729.0	683.5	474	729	474	481	33!
IP RMS veritcal beam size	$\sigma_{ m x}^* \ \sigma_{ m y}^*$	nm	7.7	5.9	5.9	7.7	5.9	2.8	2.7
Luminosity	L	$ imes 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	0.75	1.0	1.8	0.75	3.6	3.6	4.9
Fraction of luminosity in top 1%	$L_{0.01}/L$		87.1%	77.4%	58.3%	87.1%	58.3%	59.2%	44.5
Average energy loss	$\delta_{ m BS}$		0.97%	1.9%	4.5%	0.97%	4.5%	5.6%	10.5
Number of pairs per bunch crossing	$N_{ m pairs}$	$\times 10^3$	62.4	93.6	139.0	62.4	139.0	200.5	382
Total pair energy per bunch crossing	$E_{ m pairs}$	TeV	46.5	115.0	344.1	46.5	344.1	1338.0	3441

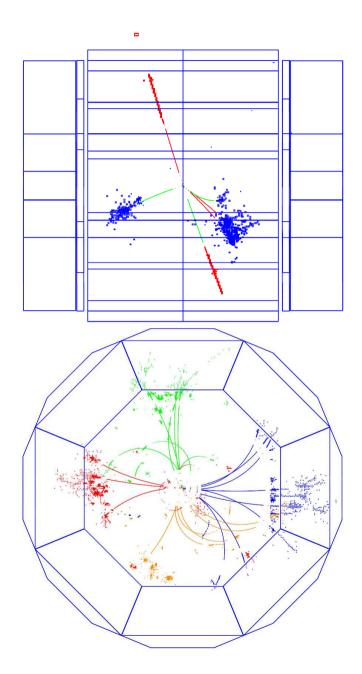
ILC Physics : Main Aspects

- PROMINENT ADVANTAGES OF THE MACHINE :
 - * Well defined initial state : E_{cm} , P_{e^-} , P_{e^+} , J, ...
 - st Tunable E_{cm} and P_{e^\pm} :
 - \ast Modest prompt interaction rate : few Hz (10 9 Hz at LHC) with O(1) % of them creating Higgs
 - $_*$ Modest machine background (\sim 10 3 less than LHC)
 - → detector performances barely compromised for running conditions
 - ⇒ priority given to precision and sensitivity, no trigger filtering
- PROMINENT PHYSICS OBJECTIVES:
 - * Higgs sector: extensive and high-precision study of Higgs parametres
 - \Rightarrow direct access to Higgs couplings (complementary to LHC which measures Br and $\sigma \cdot Br$)
 - * top-quark sector : extensive study of the nature & role of the heaviest known particle
 e.g. unique measurement of the genuine top mass via threshold scan around 350 GeV
 - * BSM physics search or / and characterisation, guided or not by LHC discoveries

Physics Processes Addressed at the ILC

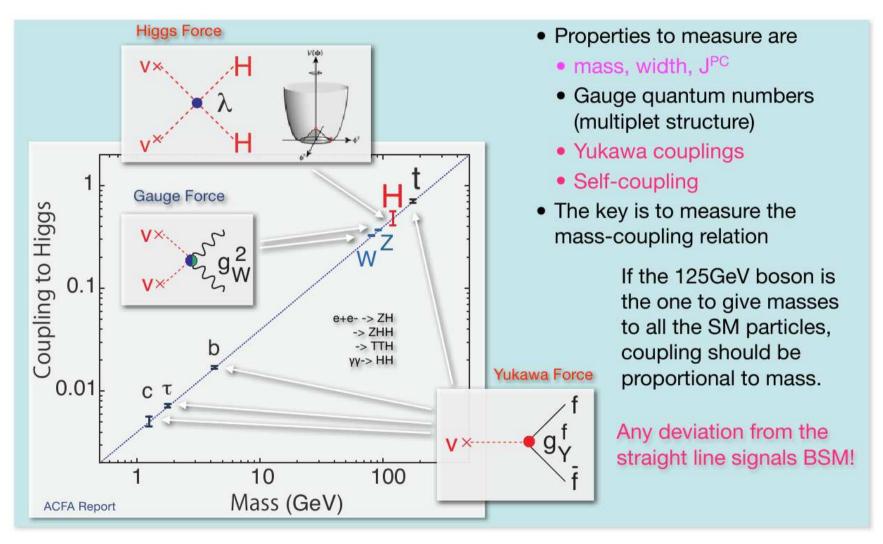
- ullet 2 STEPS IN MAXIMAL $oldsymbol{\mathsf{E}}_{CM}$ (AND LUMINOSITY) REACHABLE :
 - baseline : E $_{CM}\sim$ 500 GeV with possibility to run at lower energies $E_{CM}\sim$ 250 GeV (Higgs prod. threshold) , $E_{CM}\sim$ 350 GeV (top-quark pair prod. threshold)
 - possible upgrades $\mapsto \ {\rm E}_{CM} \sim {\rm 10}^3 \ {\rm GeV, \, L \, x \, 4}$ (?), ${\rm P}_{e^+}$, Giga-Z
- ullet Examples of ${\sf SM}$ and (hypothetical) ${\sf BSM}$ processes addressed at various ${\sf E}_{CM}$ settings

Energy	Reaction	Physics Goal
91 GeV	$e^+e^- \to Z$	ultra-precision electroweak
160 GeV	$e^+e^- \to WW$	ultra-precision W mass
$250 \mathrm{GeV}$	$e^+e^- \to Zh$	precision Higgs couplings
350-400 GeV	$e^+e^- \to t\bar{t}$	top quark mass and couplings
	$e^+e^- \to WW$	precision W couplings
	$e^+e^- \to \nu\bar{\nu}h$	precision Higgs couplings
500 GeV	$e^+e^- \to f\bar{f}$	precision search for Z'
	$e^+e^- \to t\bar{t}h$	Higgs coupling to top
	$e^+e^- \to Zhh$	Higgs self-coupling
	$e^+e^- \to \tilde{\chi}\tilde{\chi}$	search for supersymmetry
	$e^+e^- \to AH, H^+H^-$	search for extended Higgs states
700–1000 GeV	$e^+e^- \to \nu \bar{\nu} h h$	Higgs self-coupling
	$e^+e^- \to \nu\bar{\nu}VV$	composite Higgs sector
	$e^+e^- \to \nu\bar{\nu}t\bar{t}$	composite Higgs and top
	$e^+e^- \to \tilde{t}\tilde{t}^*$	search for supersymmetry


Higgs Production at 250 GeV: Final State Topology

 GRAPHIC REPRESENTATION OF 2 SIMULATED FINAL STATES COMING FROM THE PROCESS

$$e^+e^- \longrightarrow HZ$$


- YOZ VIEW OF COLLISION WHERE:
 - $Z \longrightarrow \mu^{+}\mu^{-}$ $H \longrightarrow \tau^{+}\tau^{-}$

- XOY VIEW OF COLLISION WHERE:
 - $z \longrightarrow b\overline{b}$
 - $\bullet H \longrightarrow b\overline{b}$

Higgs Properties Accessible at the ILC

HIGGS BOSON PRODUCTION AT ILC \simeq 1% OF ALL NON-QED HARD. SCATT. FINAL STATES at LHC: Higgs production rate is \sim O(10 $^{-10}$) of all physics final states

Couplings are of particular importance as they are a window towards BSM physics.

Higgs Boson Measurements : Complementary E_{cm} & Processes

ZH @ 250 GeV (~MZ+MH+20GeV) :

- · Higgs mass, width, JPC
- · Gauge quantum numbers
- Absolute measurement of HZZ coupling (recoil mass) -> couplings to H (other than top)
- BR(h->VV,qq,II,invisible): V=W/Z(direct), g, γ (loop)

ttbar @ 340-350GeV (~2mt) : ZH meas. Is also possible

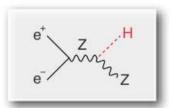
- Threshold scan --> theoretically clean mt measurement: $\Delta m_t(\overline{MS}) \simeq 100\,{\rm MeV}$ --> test stability of the SM vacuum
 - --> indirect meas. of top Yukawa coupling
- A_{FB}, Top momentum measurements
- · Form factor measurements

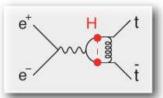
 $\gamma \gamma \rightarrow HH @ 350GeV possibility$

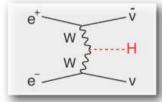
vvH @ 350 - 500GeV :

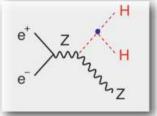
HWW coupling -> total width --> absolute normalization of Higgs couplings

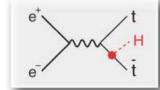
ZHH @ 500GeV (~Mz+2M++170GeV):

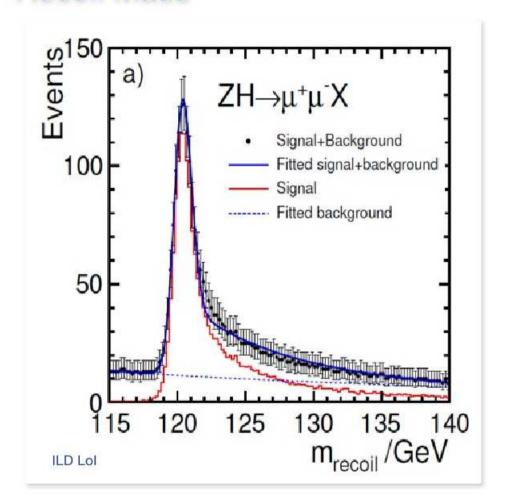

Prod. cross section attains its maximum at around 500GeV -> Higgs self-coupling

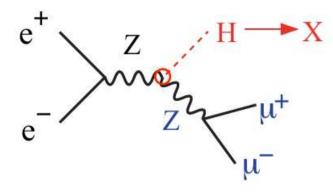

ttbarH @ 500GeV (~2mt+MH+30GeV) :


- Prod. cross section becomes maximum at around 800GeV.
- QCD threshold correction enhances the cross section -> top Yukawa measurable at 500GeV concurrently with the self-coupling


We can complete the mass-coupling plot at ~500GeV!


DATA TAKING AT $E_{cm}\simeq$ 250 GeV & 500 GeV as well as at 350 GeV (top-quark)





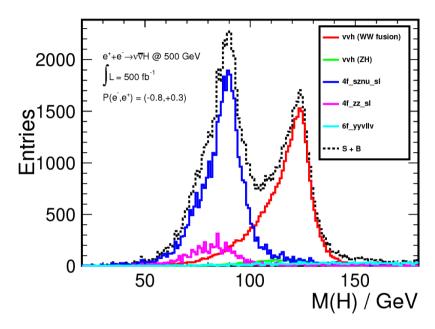
Measurements Achievable at $\mathsf{E}_{cm} \simeq$ 250 GeV

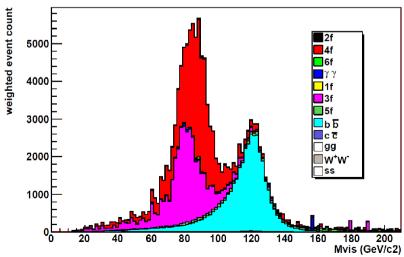
Recoil Mass

$$M_X^2 = \left(p_{CM} - (p_{\mu^+} + p_{\mu^-})\right)^2$$

Invisible decay detectable!

$$250\,{
m fb}^{-1}$$
@ $250\,{
m GeV}$ $^{m_H\,=\,125\,{
m GeV}}$ $\Delta\sigma_H/\sigma_H=2.6\%$ $\Delta m_H=30\,{
m MeV}$ $BR({
m invisible})<1\%$ @ 95% C.L. scaled from mH=120 GeV


Model-independent absolute measurement of σ_{ZH} (the HZZ coupling)

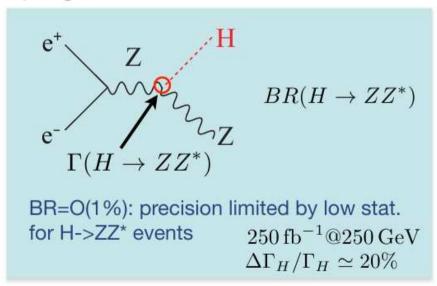

WW-Fusion Final State Identification at E_{cm} = 500 GeV and 1 TeV

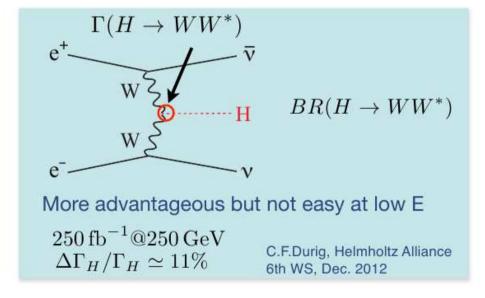
DIJET & VISIBLE MASS DISTRIBUTIONS
 IN FINAL STATES PRODUCED VIA WW-FUSION

$$e^+e^- \longrightarrow \nu \overline{\nu} H$$

- DIJET MASS DISTRIBUTION:
 - $E_{cm} = 500 \text{ GeV}$
 - $_{\circ}$ P(e⁻) / P(e⁺) = -80 % / + 30 %
 - $\bullet H \longrightarrow b\overline{b}$
- VISIBLE MASS DISTRIBUTION:
 - \bullet E_{cm} = 1 TeV
 - $_{\circ}$ P(e⁺) / P(e⁺) = -80 % / + 20 %
 - $\bullet H \longrightarrow b\overline{b}$

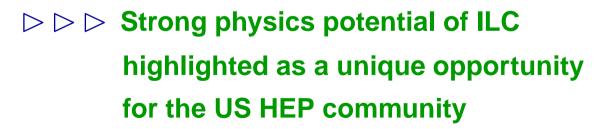
Total Width and Coupling Extraction

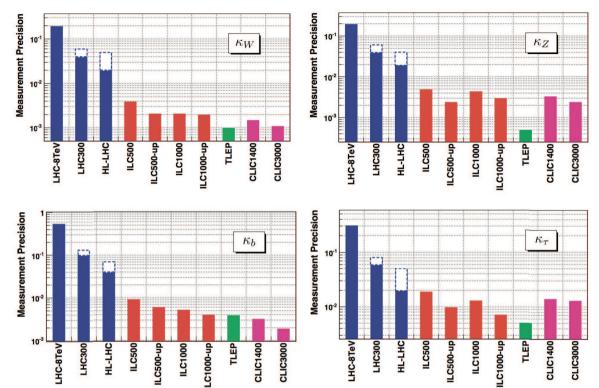

To extract couplings from BRs, we need the total width:


$$g_{HAA}^2 \propto \Gamma(H \to AA) = \Gamma_H \cdot BR(H \to AA)$$

To determine the total width, we need at least one partial width and corresponding BR:

$$\Gamma_H = \Gamma(H \to AA)/BR(H \to AA)$$


In principle, we can use A=Z, or W for which we can measure both the BRs and the couplings:



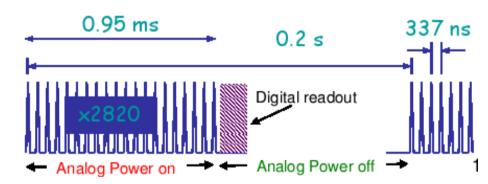
ILC Potential: Precision on Higgs Couplings

- ILC POTENTIAL EXTENSIVELY EXAMINED BY US COMMUNITY THROUGH SNOWMASS PROCESS:
 - * Snowmass final studies : August 2013
 - Contributors from all over the world (including IN2P3 community)
 - * White papers written (public)
 - * Comparison to LHC potential (and TLEP)
 - * Objective : recommandations to DoE about the US HEP strategy for the upcoming decade

Snowmass Higgs report

ILC Higgs White Paper arXiv:1310.0763
ILC Electroweak White Paper arXiv:1307.3962
ILC Top Quark White Paper arXiv:1307.8265
ILC BSM White Paper arXiv:1307.5248
CLIC Physics White Paper arXiv:1307.5288

16

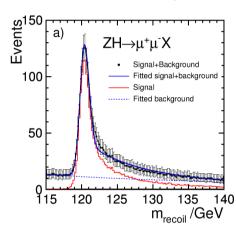

Development of Detectors Suited to ILC: General Features

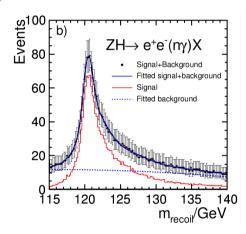
MACHINE ENVIRONMENT:

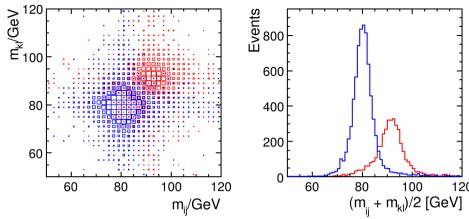
- * ILC machine environment is much milder than LHC standards
 - $_{ ext{o}}$ radiation load \lesssim 10 $^{-3}$ LHC values
 - $_{ extstyle o}$ hard process final states \sim few Hz (neglecting pure EM interactions)
- * Major consequence on detector optimisation (different from LHC):
 - o detector components optimised for physics driven requirements : precision, sensitivity, no trigger, ...
 - compromises to accommodate running conditions are modest

• ILC BEAM TIME STRUCTURE:

- $_{*}$ beam structured in bunches separated by \sim 0.5 μs and grouped into \lesssim 1 ms long trains
- st bunch trains separated by \sim 200 ms beamless periods
- ⇒ beam time structure exploited to power cycle the detector
 - \Rightarrow average power reduced by factor $\gtrsim 50$

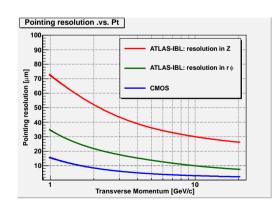

⇒ Specific R&D required

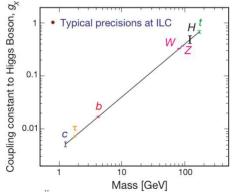

Experimental Challenges Addressed


- PARTICLE FLOW: reconstruct ALL particles individually
 - * topological reconstruction of multi-jet events
 - R&D on highly segmented calorimeters :

 ECAL (24 layers) & HCAL (48 layers)
 - hinspace Ex: W/Z separation in u
 u WW/ZZ final states

$$\Rightarrow$$
 $\Delta E/E \simeq$ 3-4% at 100 GeV



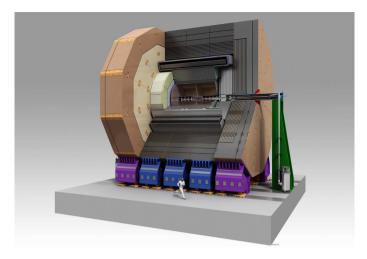


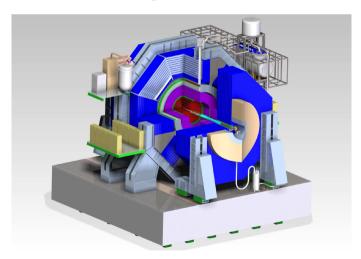
- HIGH RESOL. CHARGED PART. MOMENTUM RECONSTR.:
 - * R&D on very light high resolution tracking system : mainly TPC (ILD) (also Si-strips)

$$\rhd \text{ Ex: } e^+e^- \rightarrowtail ZH \Rrightarrow M_H^2 = S + M_Z^2 - 2 \cdot E_Z \cdot \sqrt{S}$$

$$\Rrightarrow \sigma_{1/P_t} \simeq 2 \cdot 10^{-5} GeV^{-1}$$

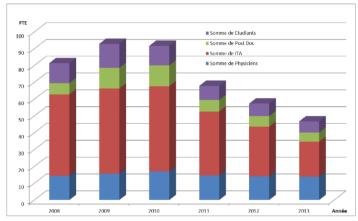
- HIGHLY GRANULAR AND LIGHT VERTEX DETECTOR:
 - * R&D on new pixel techno. & ultra-light mechanical supports
 - ightharpoonup Ex: Hxx couplings from $e^+e^- \rightarrow ZH$
 - $\Rightarrow \sigma_{IP} \lesssim 5 \oplus 10/p \cdot \sin^{3/2}\theta \ \mu m$

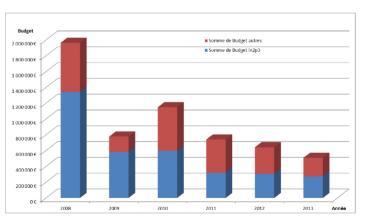



ILC Detector Activities at IN2P3

- Detector R&D world-wide coordinated :
 - * Goal: proof of principle of detector feasibility
 - ∗ 2 complementary experimental approaches
 → detector concepts
 - ILD : largest detector, main tracker ≡ TPC
 - $_{\circ}$ SiD : most compact, main tracker \equiv Si μ strips
 - operated in push-pull mode
- 8 IN2P3 PHYS. GROUPS + OMEGA ACTIVE SINCE > DECADE
 - * SiW ECAL: LLR, LAL, LPSC, LPNHE, LPCC, OMEGA
 - st GRPC & μ Megas HCAL : IPNL, LAPP, LLR, OMEGA
 - * VXD: IPHC
 - * Others: o ROC for calorimetres developed outside of IN2P3
 - detector integration and costing
 - R&D and phys. studies coordination tasks
 - * IN2P3 activities predominantly in ILD (not restrictive)
- EXTENSIVE PERFORMANCE ASSESSMENTS CARRIED OUT :
 - * Proof of principle level reached \Rightarrow **Still missing**: *real scale* engineering prototypes

ILD




SiD

SUMMARY

- ILC project has reached necessary maturity to decide its construction in the coming few years
- Well established, rich and strong physics case
- Japan willing to host the ILC (site known, budget line created, Abenomix context ...)
 - ⇒ opportunity for HEP → ILC community getting prepared
 - ⇒ government expected to take action soon and approach potential partner countries
- IN2P3 has been among the most effective institutions in demonstrating the feasibility of the high precision detectors required, using ground breaking approaches
- Scientific production :
 - * Theses: 16 defended since 2008, 9 under way
 - * Publications : > 100 publications since 2008
 - * Reference devices : EUDET and AIDA EU projects
 - * Spin-offs: HEP, hadrontherapy, astroparticle physiscs, ...
- FORTHCOMING TALKS WILL REVIEW AND ILLUSTRATE
 IN2P3 ACHIEVEMENTS, EXPERTISE AND PLANS

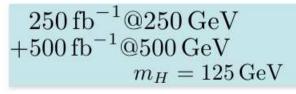
BACK-UP SLIDES

HIggs Characterisation Oriented Machine Program

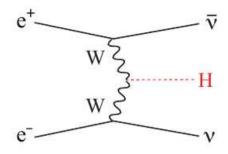
A comprehensive Higgs program requires running at multiple energies:

250 GeV: tagged Higgs, branching ratios

350-500 GeV: W fusion production, absolute normalization of the couplings


> 700 GeV: Higgs coupling to top

> 700 GeV: Higgs self-coupling


The energy stages of ILC will allow us to carry out this program.

Precisions Achievable

E _{cm} [GeV]	independent measurements	relative error
250	σ_{ZH}	2.6%
	$\sigma_{ZH} \cdot Br(H o bar{b})$	1.2%
	$\sigma_{ZH} \cdot Br(H \to c\bar{c})$	8.3%
	$\sigma_{ZH} \cdot Br(H o gg)$	7.0%
	$\sigma_{ZH} \cdot Br(H \to WW^*)$	6.4%
	$\sigma_{ZH} \cdot Br(H \to \tau^+ \tau^-)$	4.2%
	$\sigma_{\nu \bar{\nu} H} \cdot Br(H \to b\bar{b})$	10.5%
	σ_{ZH}	3.0%
	$\sigma_{ZH} \cdot Br(H o b ar{b})$	1.8%
	$\sigma_{ZH} \cdot Br(H \to c\bar{c})$	13%
500	$\sigma_{ZH} \cdot Br(H o gg)$	11%
	$\sigma_{ZH} \cdot Br(H \to WW^*)$	9.2%
	$\sigma_{ZH} \cdot Br(H \to \tau^+ \tau^-)$	5.4%
	$\sigma_{ uar u H} \cdot Br(H o bar b)$	0.66%
	$\sigma_{\nu\bar{\nu}H} \cdot Br(H \to c\bar{c})$	6.2%
	$\sigma_{ uar{ u}H}\cdot Br(H o gg)$	4.1%
	$\sigma_{\nu\bar{\nu}H} \cdot Br(H \to WW^*)$	2.4%

ILD DBD Full Simulation Study

comes in as a powerful tool!

$$\Delta\Gamma_H/\Gamma_H \simeq 5\%$$

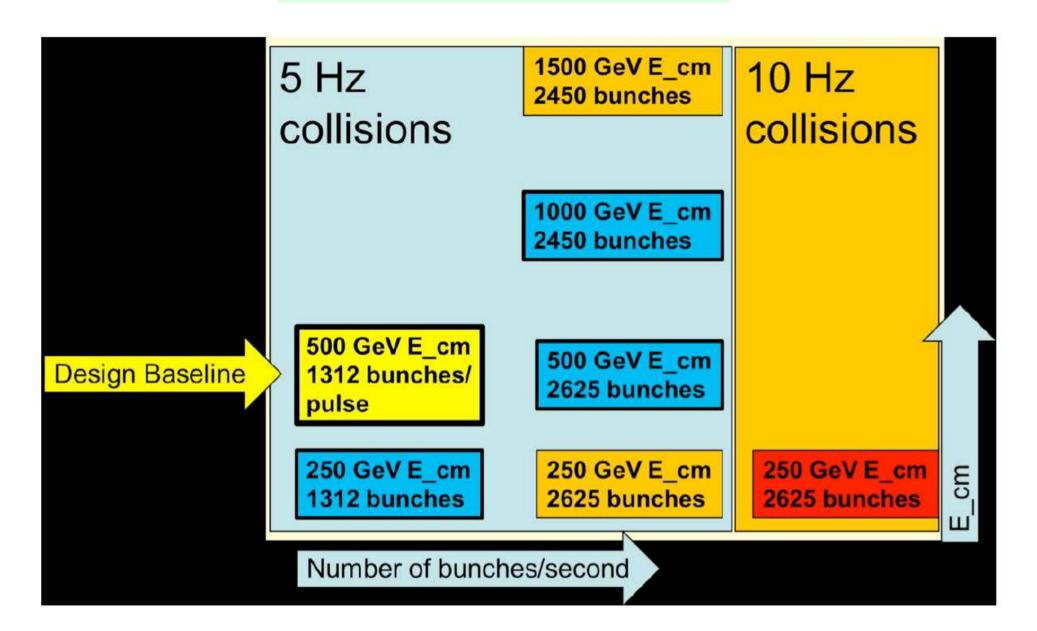
Mode	ΔBR/BR
bb	2.2 (2.9)%
СС	5.1 (8.7)%
99	4.0 (7.5)%
WW*	3.1 (6.9)%
ττ	3.7 (4.9)%

The numbers in the parentheses are as of $\,250\, fb^{-1}@250\, GeV$

Higgs Characterisation Oriented Machine Program

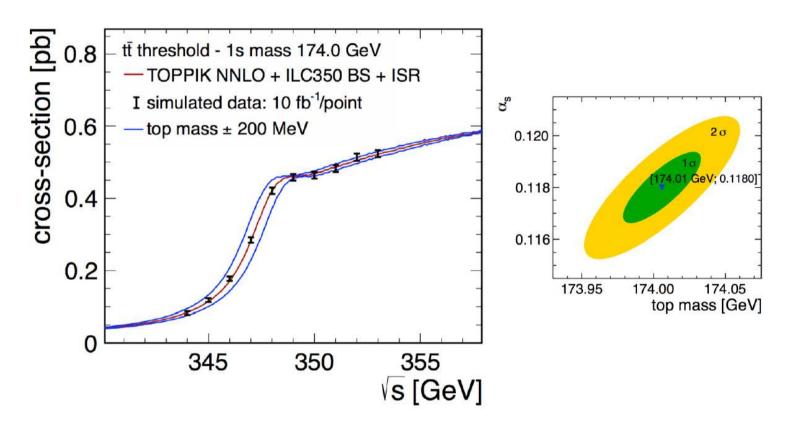
Can one comparably quantify the opportunity of the ILC?

Attitude of the ILC Higgs White paper:

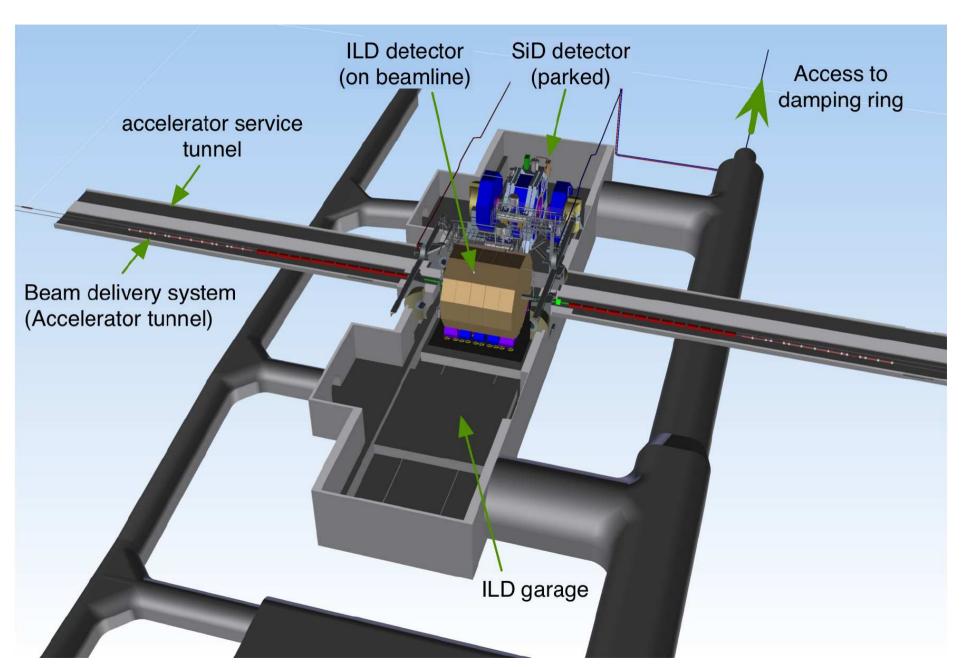

Consider the long-term ILC program.

The TDR is the beginning. It sets a new level of accuracy dominated by statistical errors.

Improve the TDR uncertainties by more running, and by luminosity upgrades foreseen in the TDR.


Nickname	Ecm(1)	Lumi(1)	+	Ecm(2)	Lumi(2)	+	Ecm(3)	Lumi(3)
	(GeV)	(fb^{-1})		(GeV)	(fb^{-1})		(GeV)	(fb^{-1})
ILC(250)	250	250						
ILC(500)	250	250		500	500			
ILC(1000)	250	250		500	500		1000	1000
ILC(LumUp)	250	1150		500	1600		1000	2500

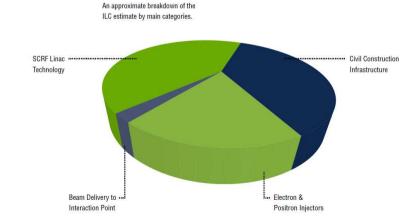
ILC Upgrades Envisaged


Top Physics

- The two most important goals of the ILC program on the top quark are :
 - ∗ measure the genuine top quark mass ≡ fundamental parametre
 - * search for signals of top-Higgs compositeness (similar opportunities may exist wrt W-boson)

$$\Delta[m_t(\overline{MS}, m_t)] \sim 100 \text{ MeV}$$

Interaction Region



Refereence Design Report : ILC Machine Costing

What are the numbers?

The following figures are the base VALUE and LABOUR quantities that can be translated into costs, by using a given national costing method:

SHARED VALUE = SITE-DEPENDENT VALUE	4.87 Billion ILC VALUE UNITS E = 1.78 Billion ILC VALUE UNITS			
TOTAL VALUE = (shared + site-dependen	6.65 Billion ILC Value Units			
LABOUR =	22 million person-hours = 13,000 person-years (assuming 1700 person-hours per person-year)			
1 ILC VALUE UNIT =	1 US Dollar (2007) = 0.83 Euros = 117 Yen			

What does the estimate include and exclude?

The VALUE and LABOUR amounts include:

- construction of a 500 GeV machine and the essential elements to enable an optional future upgrade to 1 TeV;
- tooling-up industry, final engineering designs, and construction management;
- construction of all conventional facilities including tunnels, surface buildings, detector assembly buildings, underground experimental halls, and access shafts; and
- explicit labour including that for management and administrative personnel.

The VALUE and LABOUR amounts exclude:

- engineering, design or preparation activities that must be accomplished before project funding (such as R&D), proof-of-principle, and prototype tests;
- surface land acquisition or underground easement costs:
- detectors, which are assumed to be funded by a separate agreement;
- · contingencies for risks; and
- escalation (inflation).

Alternatives à l'ILC

- Plusieurs alternatives à l'ILC ont été considérées : CLIC, TLEP, ...
 - PLUSIEURS CRITÈRES ENTRENT EN JEU DANS LA COMPARAISON
- 5 critères principaux :
 - * maturité du projet sous-jacente aux performances annoncées (coût, accélérateur, détecteurs)
 - * calendrier et opportunité scientifique
 - ∗ cadre politique favorable à la réalisation du projet ⇒ opportunité
 - * valeur ajoutée scientifique du projet par rapport aux projets plus avancés
 - * prise en compte des conditions économiques : P et bridage des performances
- 3 critères annexes :
 - * forces et expertises des communautés intéressées (dans les 3 régions)
 - * degré de consensus mondial pour le projet
 - * impact sur le renforcement politique de la discipline