# ILC Detector Related Activities at IN2P3 : Introduction and Project Overview

#### M. Winter (IPHC-Strasbourg)

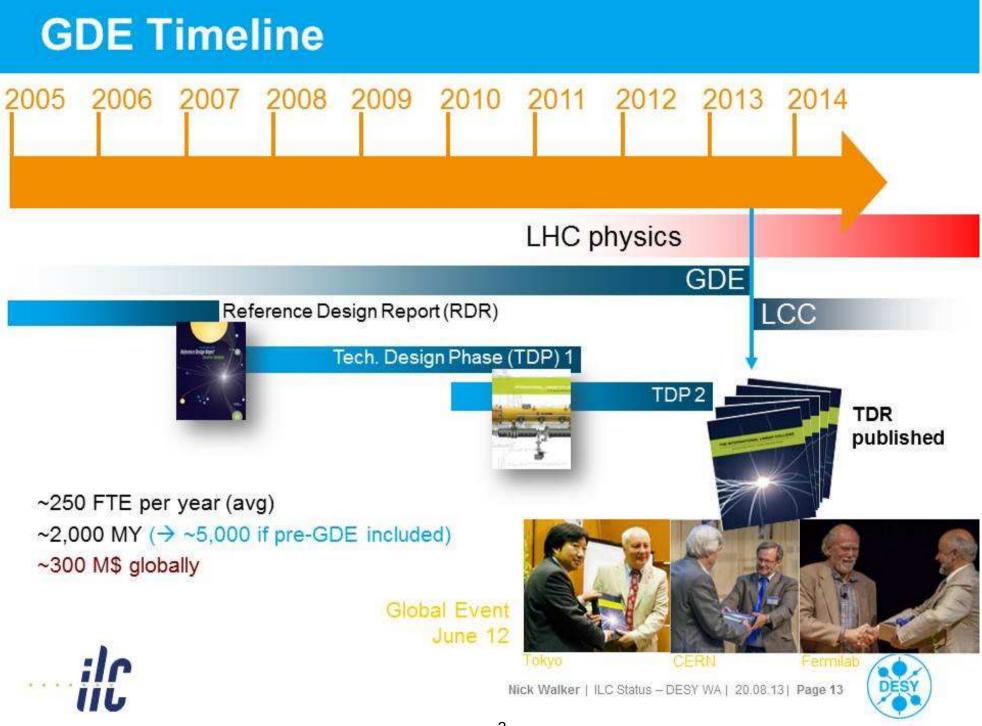
on behalf of the IN2P3 ILC-detector groups : IPHC, IPNL, LAL, LAPP, LLR, LPCC, LPNHE, LPSC, OMEGA

CONSEIL SCIENTIFIQUE DE L'IN2P3, Paris, 30 & 31 Janvier 2014

Outline

- ILC project
- ILC running parametres and conditions
- Selected physics motivations
- Overview of detector concepts
- IN2P3 areas of activities
- Summary
- \* Main sources: B. Barish & J. Brau: The International Linear Collider, arXiv: 1311.3397v1 (physics.acc-ph), 14 Nov. 2013
  - ILC Technical Design Report, 5 vol. (2013), CERN-ATS-2-13-037
  - D.M. Asner et al. : ILC Higgs White Paper, arXiv:1310.0763v2 [hep-ph] 23 Oct. 2013
  - D.M. Asner et al. : ILC Top-quark White Paper, arXiv:1307.8265v3 [hep-ex] 30 Dec. 2013

# **The ILC Project : Prominent Aspects**


- ILC BASIC PARAMETRES :
  - $_{*}\,\,{
    m e^+e^-}$  collisions at a **tunable c.m. energy** of 200 to 500 GeV, extendable to  $\sim$  1 TeV
  - \* Luminosity  $\gtrsim$  O(10<sup>34</sup>)  $cm^{-2} \cdot s^{-1}$  (~ 10<sup>3</sup> × SLC)
  - \* Both beams with **tunable polarisation**
- MACHINE, DETECTOR AND PHYSICS STUDIES PERFORMED SINCE THE '90S :
  - \* **R&D on accelerator** has demonstrated its feasibility :

Technical Design Report **(TDR)** delivered in Dec. 2012  $\rightarrow$  official publi. in June 2013

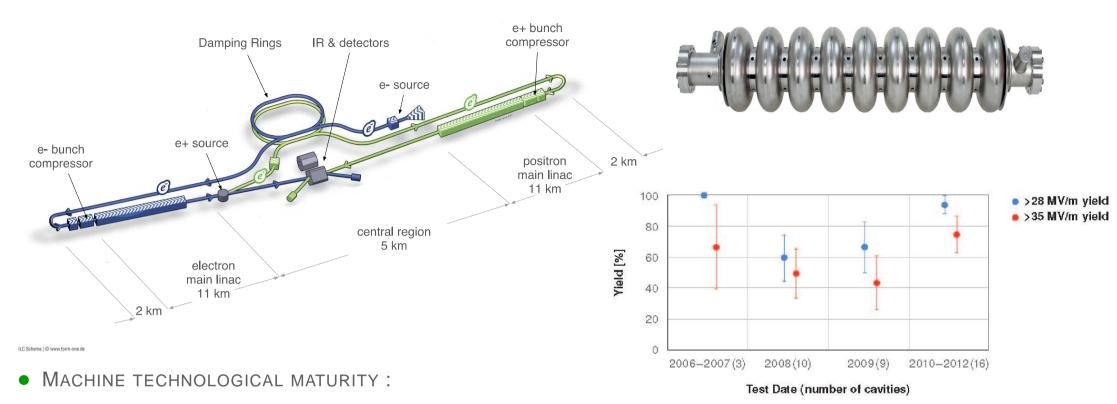
\* **R&D on experiments** (detectors) has  $\pm$  demonstrated their feasibility :

Detailed Baseline Design (DBD) delivered in February 2013

- \* Physics potential reliably evaluated
- LONG RANGE WORLD WIDE COORDINATED EFFORT :
  - \* Global Design Effort (GDE) until 2013 (chairman: B. Barish/CalTech)
  - \* Linear Collider Collaboration (LCC) since February 2013 (chairman: L. Evans/CERN)

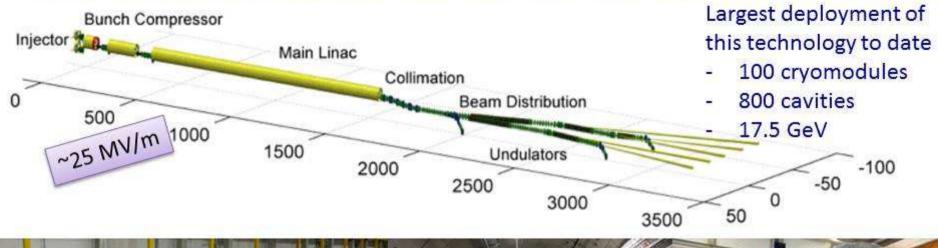


# The ILC Project : The International Context


- THE SITUATION IN JAPAN :
  - \* Japan has been very proactive in promoting the ILC to be built in the country
  - \* Japanese government is examining how it could host the ILC
    - $_{\circ}$  Site has been decided : Kitakami mountains in North of Japan  $\triangleright$
    - Team of Diet members examining ILC issues since 2008
      - $\hookrightarrow$  followed monthly lectures on HEP
    - Recently: government has announced the creation

of its own ILC-budget for FY'14

- THE SITUATION OUTSIDE OF JAPAN :
  - \* The perspective of an ILC in Japan was integrated in the 2013 update of the EU strategy for HEP (statement Nr.3)
  - \* Countries are getting contacted by Japanese gvt representatives
    - $\rightarrow$  discussions will start soon on possible contributions
  - $_{*}$  Final decision for constructing ILC (or not ...) expected in  $\sim$  3-5 years
  - \* Start of physics expected by the end of next decade




# **Overview of the ILC Machine**



- All major technical problems solved, e.g. cavity gradient, quality factor & industrial yield
- But R&D still needed to improve & optimise the machine design realism and to reduce the cost
- IN2P3 accelerator groups strongly involved in cavity powering (klystrons/couplers), while CEA strongly involved in cryomule production (XFEL)
- IN2P3 groups involved in beam instrumentation close to IP
- XFEL linac ( $\cong$  1/10 ILC linac) under construction at DESY, based on SCRF cavities providing a gradient ( $\sim$  25 MV/m) adapted to ILC until  $\sim$  350 GeV

# European XFEL @ DESY





| Institute                              | Component Task                                                                                                                                                                                         |            |  |  |  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|--|
| CEA Saclay / IRFU, France              | Cavity string and module assembly; cold bean<br>monitors                                                                                                                                               | n position |  |  |  |
| CNRS / LAL Orsay, France               | RF main input coupler incl. RF conditioning                                                                                                                                                            |            |  |  |  |
| DESY, Germany                          | Cavities & cryostats; contributions to string & module<br>assembly; coupler interlock; frequency tuner; cold-<br>vacuum system; integration of superconducting magnets;<br>cold beam-position monitors |            |  |  |  |
| INFN Milano, Italy                     | Cavities & cryostats                                                                                                                                                                                   |            |  |  |  |
| Soltan Inst., Poland                   | Higher-order-mode coupler & absorber                                                                                                                                                                   |            |  |  |  |
| CIEMAT, Spain                          | Superconducting magnets                                                                                                                                                                                |            |  |  |  |
| IFJ PAN Cracow, Poland<br>BINP, Russia | RF cavity and cryomodule testing<br>Cold vacuum components                                                                                                                                             | N. Wal     |  |  |  |

İİL

#### The ultimate 'integrated systems test' for ILC. Commissioning with beam 2<sup>nd</sup> half 2015

N. Walker (DESY) – ILC Worldwide Event – CERN – 12 June 2013 18

### **Machine Parametres from 200 to 1000 GeV**

#### • Staged operation of the machine, e.g. 250 GeV $\rightarrow$ 350/500 GeV $\rightarrow$ 500/350 GeV

• Luminosities calculated with several conservative assumptions (e.g. power)

|                                      |                                |                                                 | Baseline | e 500 GeV I | Machine | 1st Stage | L Upgrade | $E_{ m CM}$ L | lpgrade |
|--------------------------------------|--------------------------------|-------------------------------------------------|----------|-------------|---------|-----------|-----------|---------------|---------|
|                                      |                                |                                                 | -        |             |         |           |           | A             | В       |
| Centre-of-mass energy                | $E_{\rm CM}$                   | GeV                                             | 250      | 350         | 500     | 250       | 500       | 1000          | 1000    |
| Collision rate                       | $f_{ m rep}$                   | Hz                                              | 5        | 5           | 5       | 5         | 5         | 4             | 4       |
| Electron linac rate                  | $f_{ m linac}$                 | Hz                                              | 10       | 5           | 5       | 10        | 5         | 4             | 4       |
| Number of bunches                    | $n_{ m b}$                     |                                                 | 1312     | 1312        | 1312    | 1312      | 2625      | 2450          | 2450    |
| Bunch population                     | N                              | $	imes 10^{10}$                                 | 2.0      | 2.0         | 2.0     | 2.0       | 2.0       | 1.74          | 1.74    |
| Bunch separation                     | $\Delta t_{ m b}$              | ns                                              | 554      | 554         | 554     | 554       | 366       | 366           | 366     |
| Pulse current                        | $I_{ m beam}$                  | mA                                              | 5.8      | 5.8         | 5.8     | 5.8       | 8.8       | 7.6           | 7.6     |
| Main linac average gradient          | $G_{\mathrm{a}}$               | $\rm MVm^{-1}$                                  | 14.7     | 21.4        | 31.5    | 31.5      | 31.5      | 38.2          | 39.2    |
| Average total beam power             | $P_{\mathrm{beam}}$            | MW                                              | 5.9      | 7.3         | 10.5    | 5.9       | 21.0      | 27.2          | 27.2    |
| Estimated AC power                   | $P_{\rm AC}$                   | MW                                              | 122      | 121         | 163     | 129       | 204       | 300           | 300     |
| RMS bunch length                     | $\sigma_{ m z}$                | mm                                              | 0.3      | 0.3         | 0.3     | 0.3       | 0.3       | 0.250         | 0.225   |
| Electron RMS energy spread           | $\Delta p/p$                   | %                                               | 0.190    | 0.158       | 0.124   | 0.190     | 0.124     | 0.083         | 0.085   |
| Positron RMS energy spread           | $\Delta p/p$                   | %                                               | 0.152    | 0.100       | 0.070   | 0.152     | 0.070     | 0.043         | 0.047   |
| Electron polarisation                | $P_{-}$                        | %                                               | 80       | 80          | 80      | 80        | 80        | 80            | 80      |
| Positron polarisation                | $P_+$                          | %                                               | 30       | 30          | 30      | 30        | 30        | 20            | 20      |
| Horizontal emittance                 | $\gamma \epsilon_{\mathbf{x}}$ | μm                                              | 10       | 10          | 10      | 10        | 10        | 10            | 10      |
| Vertical emittance                   | $\gamma\epsilon_{ m y}$        | nm                                              | 35       | 35          | 35      | 35        | 35        | 30            | 30      |
| IP horizontal beta function          | $\beta^*_{\mathbf{x}}$         | mm                                              | 13.0     | 16.0        | 11.0    | 13.0      | 11.0      | 22.6          | 11.0    |
| IP vertical beta function            | $eta_{	extrm{y}}^{*}$          | mm                                              | 0.41     | 0.34        | 0.48    | 0.41      | 0.48      | 0.25          | 0.23    |
| IP RMS horizontal beam size          | $\sigma^*_{\mathrm{x}}$        | nm                                              | 729.0    | 683.5       | 474     | 729       | 474       | 481           | 335     |
| IP RMS veritcal beam size            | $\sigma_{\mathrm{y}}^{*}$      | nm                                              | 7.7      | 5.9         | 5.9     | 7.7       | 5.9       | 2.8           | 2.7     |
| Luminosity                           | L                              | $	imes 10^{34}~\mathrm{cm}^{-2}\mathrm{s}^{-1}$ | 0.75     | 1.0         | 1.8     | 0.75      | 3.6       | 3.6           | 4.9     |
| Fraction of luminosity in top 1%     | $L_{0.01}/L$                   |                                                 | 87.1%    | 77.4%       | 58.3%   | 87.1%     | 58.3%     | 59.2%         | 44.5%   |
| Average energy loss                  | $\delta_{\rm BS}$              |                                                 | 0.97%    | 1.9%        | 4.5%    | 0.97%     | 4.5%      | 5.6%          | 10.5%   |
| Number of pairs per bunch crossing   | $N_{ m pairs}$                 | $\times 10^{3}$                                 | 62.4     | 93.6        | 139.0   | 62.4      | 139.0     | 200.5         | 382.6   |
| Total pair energy per bunch crossing | $E_{\rm pairs}$                | TeV                                             | 46.5     | 115.0       | 344.1   | 46.5      | 344.1     | 1338.0        | 3441.0  |

# **ILC Physics : Main Aspects**

- PROMINENT ADVANTAGES OF THE MACHINE :
  - \* Well defined initial state :  $E_{cm}$ ,  $P_{e^-}$ ,  $P_{e^+}$ , J, ...
  - $\ast\,$  Tunable  $\mathsf{E}_{cm}$  and  $\mathsf{P}_{e^\pm}$  :

 $\hookrightarrow$  threshold scan, signal enhancement & (SM) background suppression

- \* Low prompt interaction rate : few Hz ( $10^9$  Hz at LHC) with O(1) % of them creating Higgs
- \* Modest machine background ( $\sim$  10 $^3$  less than LHC)
  - $\hookrightarrow$  Detector performances barely compromised for running conditions
  - $\Rightarrow$  priority given to precision and sensitivity, no trigger filtering
- PROMINENT PHYSICS OBJECTIVES : HIGGS-SECTOR, DM, MATTER-ANTIMATTER ASYM, ...
  - \* Higgs sector : extensive and high-precision study of Higgs parametres
    - $\Rightarrow$  direct access to Higgs couplings (complementary to LHC which measures Br and  $\sigma \cdot Br$ )
      - $\hookrightarrow$  Higgs properties against SM predictions  $\mapsto$  access to BSM physics ?
  - \* top-quark sector : extensive study of the nature & role of the heaviest known particle
    - e.g. unique measurement of the genuine top mass via threshold scan around 350 GeV
  - \* **BSM physics** search or / and characterisation, guided or not by LHC discoveries

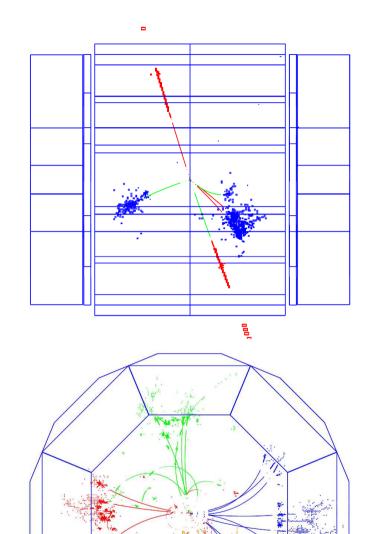
### **Physics Processes Addressed at the ILC**

- 2 STEPS IN MAXIMAL  $\mathsf{E}_{CM}$  (and luminosity) reachable :
  - **Baseline :**  $E_{CM} \sim 500$  GeV with possibility to run at lower energies

 $E_{CM}\sim$  250 GeV (Higgs prod. threshold) ,  $E_{CM}\sim$  350 GeV (top-quark pair prod. threshold)

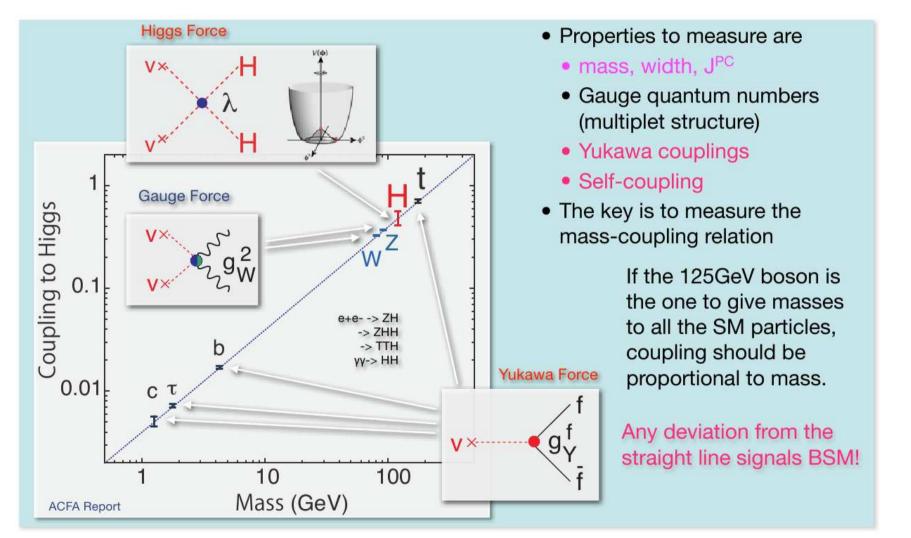
- Possible upgrades  $\mapsto~$  E $_{CM}\sim$  10 $^3$  GeV, L x 4 (?), P $_{e^+}$ , Giga-Z
- Examples of SM and (hypothetical) BSM processes addressed at various  $E_{CM}$  settings

| Energy                | Reaction                                     | Physics Goal                     |
|-----------------------|----------------------------------------------|----------------------------------|
| $91 \mathrm{GeV}$     | $e^+e^- \rightarrow Z$                       | ultra-precision electroweak      |
| $160 \mathrm{GeV}$    | $e^+e^- \to WW$                              | ultra-precision $W$ mass         |
| $250 \mathrm{GeV}$    | $e^+e^- \to Zh$                              | precision Higgs couplings        |
| $350400~\mathrm{GeV}$ | $e^+e^- \to t\bar{t}$                        | top quark mass and couplings     |
|                       | $e^+e^- \to WW$                              | precision $W$ couplings          |
|                       | $e^+e^- \rightarrow \nu \bar{\nu} h$         | precision Higgs couplings        |
| $500  {\rm GeV}$      | $e^+e^- \to f\bar{f}$                        | precision search for $Z'$        |
|                       | $e^+e^- \to t\bar{t}h$                       | Higgs coupling to top            |
|                       | $e^+e^- \to Zhh$                             | Higgs self-coupling              |
|                       | $e^+e^- \to \tilde{\chi}\tilde{\chi}$        | search for supersymmetry         |
|                       | $e^+e^- \rightarrow AH, H^+H^-$              | search for extended Higgs states |
| $700-1000 { m ~GeV}$  | $e^+e^- \rightarrow \nu \bar{\nu} hh$        | Higgs self-coupling              |
|                       | $e^+e^- \rightarrow \nu \bar{\nu} V V$       | composite Higgs sector           |
|                       | $e^+e^- \rightarrow \nu \bar{\nu} t \bar{t}$ | composite Higgs and top          |
|                       | $e^+e^- \to \tilde{t}\tilde{t}^*$            | search for supersymmetry         |


# **Higgs Production at 250 GeV : Final State Topology**

- Clean final states allow for high S/B & precise measurements Ex:  $e^+e^- \longrightarrow HZ$
- YOZ VIEW OF COLLISION WHERE :

•  $Z \longrightarrow \mu^+ \mu^-$ •  $H \longrightarrow \tau^+ \tau^-$ 


• XOY VIEW OF COLLISION WHERE :

 $\ \cdot \ \ \, Z \longrightarrow b\overline{b}$  $\ \ \, \cdot \ \ \, H \longrightarrow b\overline{b}$ 



# **Higgs Properties Accessible at the ILC**

• HIGGS BOSON PRODUCTION AT ILC  $\simeq$  1% OF ALL NON-QED HARD SCATTERING FINAL STATES at LHC : Higgs production rate is  $\sim$  O(10<sup>-9/-10</sup>) of all physics final states



• COUPLINGS ARE OF PARTICULAR IMPORTANCE AS THEY ARE A WINDOW TOWARDS BSM PHYSICS

# **Higgs Boson Measurements : Complementary E**<sub>cm</sub> & **Processes**

 $y y \rightarrow HH @ 350GeV possibility$ 

#### ZH @ 250 GeV (~Mz+MH+20GeV) :

- Higgs mass, width, JPC
- Gauge quantum numbers
- Absolute measurement of HZZ coupling (recoil mass) -> couplings to H (other than top)
- BR(h->VV,qq,II,invisible): V=W/Z(direct), g, y (loop)

#### ttbar @ 340-350GeV (~2mt) : ZH meas. Is also possible

- Threshold scan --> theoretically clean mt measurement:  $\Delta m_t(\overline{MS}) \simeq 100 \,\mathrm{MeV}$ 
  - --> test stability of the SM vacuum

#### --> indirect meas. of top Yukawa coupling

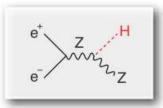
- A<sub>FB</sub>, Top momentum measurements
- · Form factor measurements

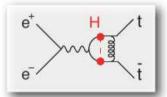
#### vvH @ 350 - 500GeV :

HWW coupling -> total width --> absolute normalization of Higgs couplings

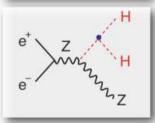
#### ZHH @ 500GeV (~Mz+2MH+170GeV) :

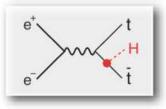
Prod. cross section attains its maximum at around 500GeV -> Higgs self-coupling


#### ttbarH @ 500GeV (~2mt+MH+30GeV) :


- Prod. cross section becomes maximum at around 800GeV.
- QCD threshold correction enhances the cross section -> top Yukawa measurable at 500GeV concurrently with the self-coupling

### We can complete the mass-coupling plot at ~500GeV!


12


• DATA TAKING AT  $E_{cm} \simeq 250 \text{ GeV}$  & 500 GeV as well as at 350 GeV (top-quark)



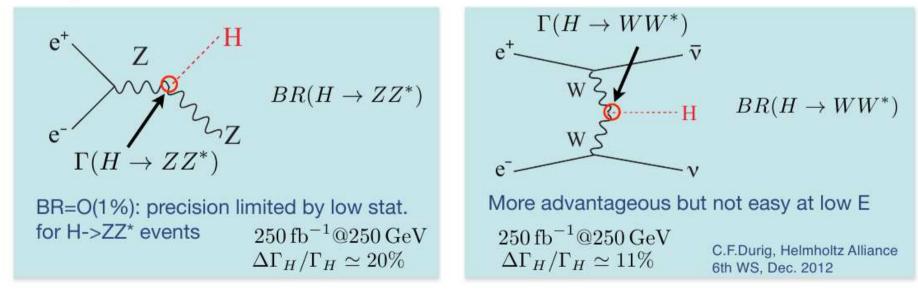






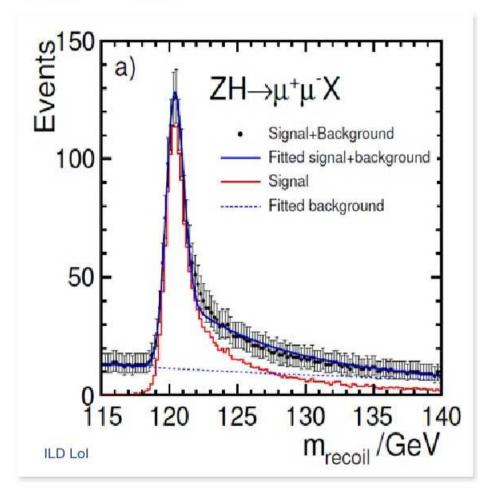


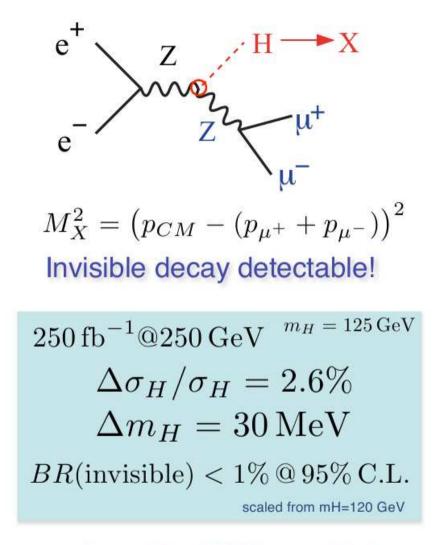
# **Total Width and Coupling Extraction**


To extract couplings from BRs, we need the total width:

$$g_{HAA}^2 \propto \Gamma(H \to AA) = \Gamma_H \cdot BR(H \to AA)$$

To determine the total width, we need at least one partial width and corresponding BR:

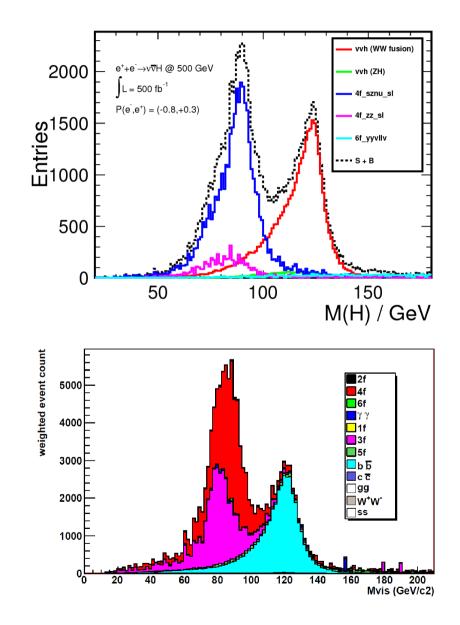

$$\Gamma_H = \Gamma(H \to AA) / BR(H \to AA)$$


In principle, we can use A=Z, or W for which we can measure both the BRs and the couplings:



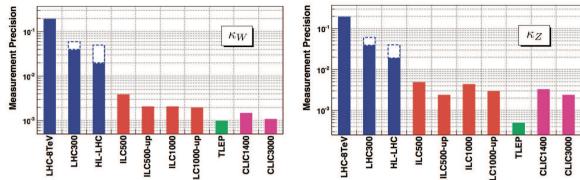
### Measurements Achievable at $E_{cm} \simeq$ 250 GeV

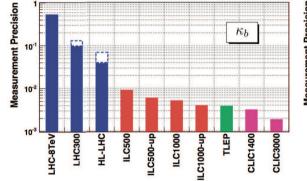
# **Recoil Mass**

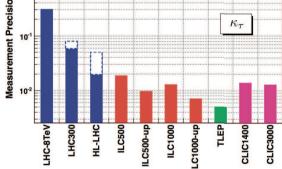





Model-independent absolute measurement of  $\sigma_{ZH}$  (the HZZ coupling)


### **WW-Fusion Final State Identification at E\_{cm} = 500 GeV and 1 TeV**


- DIJET & VISIBLE MASS DISTRIBUTIONS IN FINAL STATES PRODUCED VIA WW-FUSION  $e^+e^- \longrightarrow \nu \overline{\nu} H$
- DIJET MASS DISTRIBUTION :
  - $\circ$  E<sub>cm</sub> = 500 GeV
  - $P(e^-) / P(e^+) = -80 \% / + 30 \%$ •  $H \longrightarrow b\overline{b}$
- VISIBLE MASS DISTRIBUTION :
  - $E_{cm} = 1 \text{ TeV}$
  - $P(e^{-}) / P(e^{+}) = -80 \% / + 20 \%$ •  $H \longrightarrow b\overline{b}$




# **ILC Potential : Precision on Higgs Couplings**

- ILC POTENTIAL EXTENSIVELY EXAMINED BY US COMMUNITY THROUGH SNOWMASS PROCESS :
  - Snowmass final studies : August 2013 \*
  - Contributors from all over the world (including IN2P3 community)
  - White papers written (public) \*
  - Comparison to LHC potential (and TLEP) \*
  - Objective : recommandations to DoE \* about the US HEP strategy for the upcoming decade

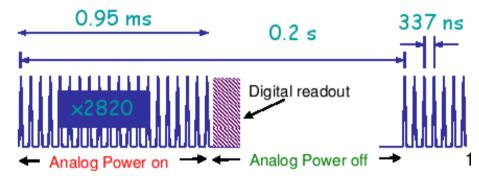






 $\triangleright \triangleright \triangleright$  Strong physics potential of ILC highlighted as a unique opportunity for the US HEP community

**ILC Higgs White Paper** ILC Electroweak White Paper arXiv:1307.3962 ILC Top Quark White Paper **ILC BSM White Paper CLIC Physics White Paper** 


#### Snowmass Higgs report

arXiv:1310.0763 arXiv:1307.8265 arXiv:1307.5248 arXiv:1307.5288

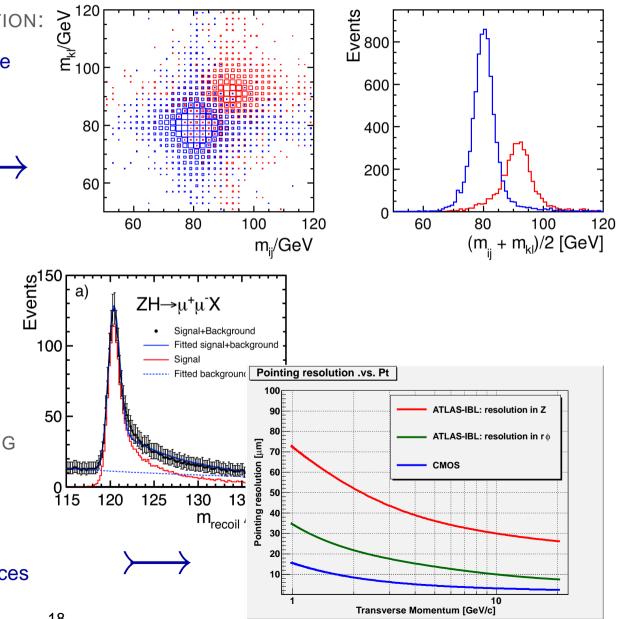
# **Development of Detectors Suited to ILC : General Features**

- MACHINE ENVIRONMENT:
  - \* ILC machine environment is much milder than LHC standards
    - $_{\circ}\,$  radiation load  $\lesssim 10^{-3}$  LHC values
    - $_{\circ}\,$  hard process final states  $\sim$  few Hz (neglecting pure EM interactions)
  - \* Major consequence on detector optimisation (different from LHC) :
    - o detector components optimised for physics driven requirements : precision, sensitivity, no trigger, ...
    - compromises to accommodate running conditions are modest
- **ILC** BEAM TIME STRUCTURE :
  - $_{*}\,$  beam structured in bunches separated by  $\sim$  0.5  $\mu s$  and grouped into  $\lesssim$  1 ms long trains
  - $_{*}\,$  bunch trains separated by  $\sim$  200 ms beamless periods
  - $\Rightarrow$  beam time structure exploited to power cycle the detector
    - $\Rightarrow$  average power reduced by factor  $\gtrsim$  50





# **Development of Detectors Suited to ILC : Driving Parametres**


HIGH RESOLUTION JET ENERGY & FLAVOUR RECONSTRUCTION

+ HIGH RESOLUTION DI-JET MASS DETERMINATION:

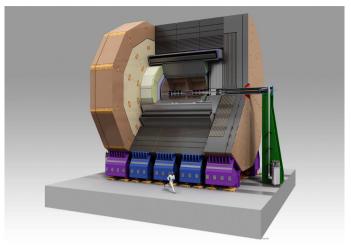
- \* PFA technique developed to meet this challenge
- \* highly granular ECAL & HCAL mandatory  $(\Delta E_{jet}/E_{jet} \simeq$  3-4% at 100 GeV

 $\hookrightarrow$  distinguish W from Z di-jets)

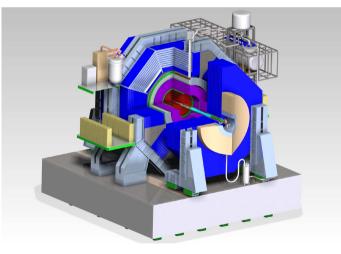
- **CHARGED TRACK RECONSTRUCTION :** 
  - \*  $\Delta P_t/P_t$  driven by reconstruction of Z decays in  $e^+e^- \rightarrowtail ZH$  where  $\mathsf{Z} \rightarrowtail \mu^+\mu^-$
  - \* very light, high resolution tracker(s) inside strong magnetic field
- HIGH EFFICIENCY & PURITY FLAVOUR TAGGING
  - \* charm decays in beam pipe
  - B, D decays inside jets \*
  - \* electric charge determination of displaced vertices
  - very light, highly pixelated vertex detector



### **Detection Performance Requirements vs Benchmark Process**

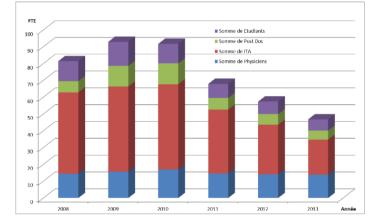

| Physics                                       | Measured                                        | Critical       | Physical               | Required                                     |
|-----------------------------------------------|-------------------------------------------------|----------------|------------------------|----------------------------------------------|
| Process                                       | Quantity                                        | System         | Magnitude              | Performance                                  |
| Zhh                                           | Triple Higgs coupling                           | Tracker        | Jet Energy             |                                              |
| $Zh  ightarrow qar{q}bar{b}$                  | Higgs mass                                      | and            | Resolution             |                                              |
| $Zh \rightarrow ZWW^*$                        | $B(h \to WW^*)$                                 | Calorimeter    | $\Delta E/E$           | 3% to $4%$                                   |
| $ u\overline{ u}W^+W^-$                       | $\sigma(e^+e^- \to \nu \overline{\nu} W^+ W^-)$ |                |                        |                                              |
| $Zh \to \ell^+ \ell^- X$                      | Higgs recoil mass                               | $\mu$ detector | Charged par-<br>ticle  |                                              |
| $\mu^+\mu^-(\gamma)$                          | Luminosity weighted $E_{cm}$                    | Tracker        | Momentum<br>Resolution | $5 \times 10^{-5} (GeV/c)^{-1}$              |
| $Zh + h\nu\overline{\nu} \to \mu^+\mu^-X$     | $BR(h \to \mu^+ \mu^-)$                         |                | $\Delta p_t / p_t^2$   |                                              |
| $Zh, h  ightarrow bar{b}, car{c}, bar{b}, gg$ | Higgs branching fractions                       | Vertex         | Impact                 | $5\mu m \bigoplus$                           |
|                                               | b-quark charge asymmetry                        |                | parameter              | $10 \mu m/p ({\rm GeV/c}) \sin^{3/2} \theta$ |
|                                               |                                                 | Tracker        | Momentum<br>Resolution |                                              |
| SUSY, eg. $\tilde{\mu}$ decay                 | $	ilde{\mu}  { m mass}$                         | Calorimeter    | Hermiticity            |                                              |
|                                               |                                                 | $\mu$ detector |                        |                                              |

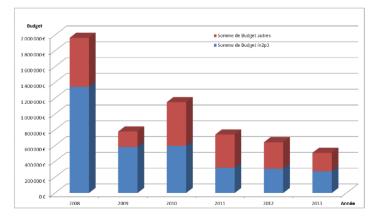
#### **See Detector Baseline Design document for details**


# **ILC Detector Activities at IN2P3**

- DETECTOR R&D WORLD-WIDE COORDINATED :
  - \* Goal : proof of principle of detector feasibility
  - \* 2 complementary experimental approaches  $\rightarrow$  detector concepts
    - $_{\circ}~$  ILD : largest detector, main tracker  $\equiv$  TPC
    - $_\circ\,$  SiD : most compact, main tracker  $\equiv\,$  Si  $\mu$ strips
    - operated in push-pull mode
- 8 IN2P3 PHYSICS GROUPS + OMEGA ACTIVE SINCE > DECADE
  - \* SiW ECAL : LLR, LAL, LPSC, LPNHE, LPCC, OMEGA
  - $\ast\,$  GRPC &  $\mu \rm Megas\,$  HCAL : IPNL, LAPP, LLR, OMEGA
  - \* VXD : IPHC
  - \* Others : ROC for calorimetres developed outside of IN2P3
    - detector integration and costing
    - R&D and phys. studies coordination tasks
  - \* IN2P3 activities predominantly in ILD (not restrictive)
- EXTENSIVE PERFORMANCE ASSESSMENTS CARRIED OUT :
  - \* Proof of principle level reached  $\Rightarrow$  **Still missing :** *real scale* engineering prototypes

# ILD





SiD



# **SUMMARY**

- ILC project has reached necessary maturity to decide its construction in the coming few years
- Well established, rich and strong physics case
- Japan willing to host the ILC (site known, budget line created, Abenomix context ...)
  - $\Rightarrow$  opportunity for HEP  $\rightarrow$  ILC community getting prepared
  - $\Rightarrow$  government expected to take action soon and approach potential partner countries
- IN2P3 has been among the most effective institutions in demonstrating the feasibility of the high precision detectors required, using ground breaking approaches
- Scientific production :
  - \* Theses : 16 defended since 2008, 9 under way
  - \* Publications : > 100 publications since 2008
  - \* Reference devices : EUDET and AIDA EU projects
  - \* Spin-offs : HEP, hadrontherapy, astroparticle physiscs, ...
- FORTHCOMING TALKS WILL REVIEW AND ILLUSTRATE IN2P3 ACHIEVEMENTS, EXPERTISE AND PLANS





# **BACK-UP SLIDES**

### HIggs Characterisation Oriented Machine Program

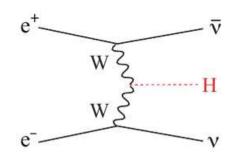
A comprehensive Higgs program requires running at multiple energies:

**250 GeV:** tagged Higgs, branching ratios

**350-500 GeV:** W fusion production, absolute normalization of the couplings

- > 700 GeV: Higgs coupling to top
- > 700 GeV: Higgs self-coupling

The energy stages of ILC will allow us to carry out this program.


# **Precisions Achievable**

| E <sub>cm</sub> [GeV] | independent measurements                         | relative error |  |
|-----------------------|--------------------------------------------------|----------------|--|
|                       | $\sigma_{ZH}$                                    | 2.6%           |  |
|                       | $\sigma_{ZH} \cdot Br(H \to b\bar{b})$           | 1.2%           |  |
| 250                   | $\sigma_{ZH} \cdot Br(H \to c\bar{c})$           | 8.3%           |  |
|                       | $\sigma_{ZH} \cdot Br(H \to gg)$                 | 7.0%           |  |
|                       | $\sigma_{ZH} \cdot Br(H \to WW^*)$               | 6.4%           |  |
|                       | $\sigma_{ZH} \cdot Br(H 	o \tau^+ \tau^-)$       | 4.2%           |  |
|                       | $\sigma_{\nu\bar{\nu}H} \cdot Br(H 	o b\bar{b})$ | 10.5%          |  |
| 500                   | $\sigma_{ZH}$                                    | 3.0%           |  |
|                       | $\sigma_{ZH} \cdot Br(H \to b\bar{b})$           | 1.8%           |  |
|                       | $\sigma_{ZH} \cdot Br(H \to c\bar{c})$           | 13%            |  |
|                       | $\sigma_{ZH} \cdot Br(H \to gg)$                 | 11%            |  |
|                       | $\sigma_{ZH} \cdot Br(H \to WW^*)$               | 9.2%           |  |
|                       | $\sigma_{ZH} \cdot Br(H \to \tau^+ \tau^-)$      | 5.4%           |  |
|                       | $\sigma_{ uar{ u}H}\cdot Br(H	o bar{b})$         | 0.66%          |  |
|                       | $\sigma_{ uar{ u}H} \cdot Br(H 	o car{c})$       | 6.2%           |  |
|                       | $\sigma_{\nu\bar{\nu}H} \cdot Br(H \to gg)$      | 4.1%           |  |
|                       | $\sigma_{ uar{ u}H} \cdot Br(H 	o WW^*)$         | 2.4%           |  |

 $250\,{\rm fb}^{-1}$  @250 GeV

 $m_H = 125 \,\mathrm{GeV}$ 

 $+500\,{\rm fb}^{-1}$  @500 GeV



comes in as a powerful tool!

 $\Delta\Gamma_H/\Gamma_H \simeq 5\%$ 

| Mode | ΔBR/BR            |
|------|-------------------|
| bb   | 2.2 (2.9)%        |
| сс   | 5.1 (8.7)%        |
| gg   | <b>4.0</b> (7.5)% |
| WW*  | 3.1 (6.9)%        |
| ττ   | 3.7 (4.9)%        |

The numbers in the parentheses are as of  $250\,{\rm fb}^{-1}@250\,{\rm GeV}$ 

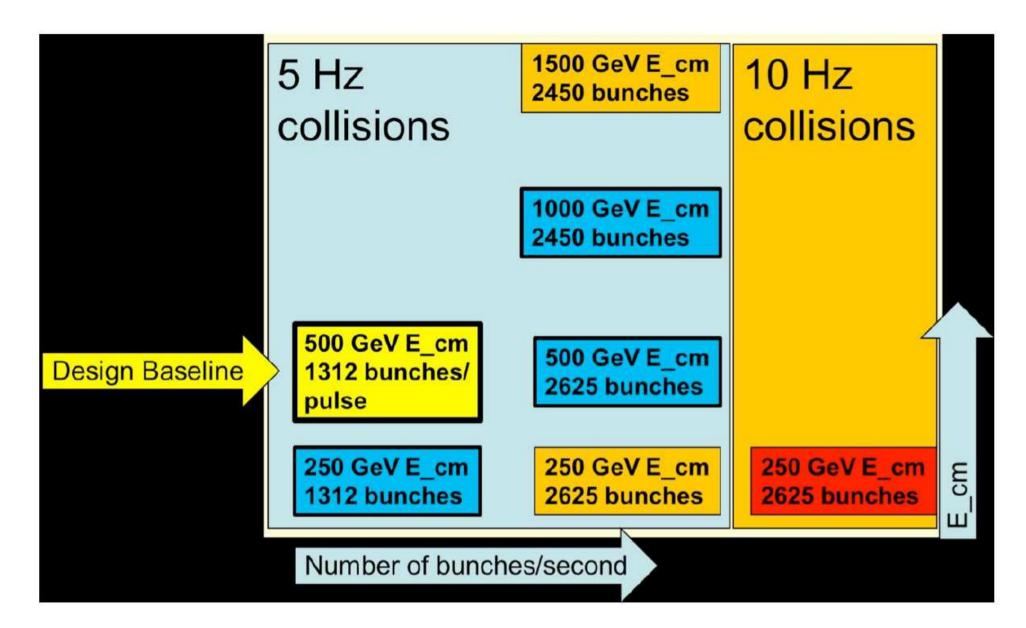
ILD DBD Full Simulation Study

24

### **Higgs Characterisation Oriented Machine Program**

Can one comparably quantify the opportunity of the ILC?

Attitude of the ILC Higgs White paper:

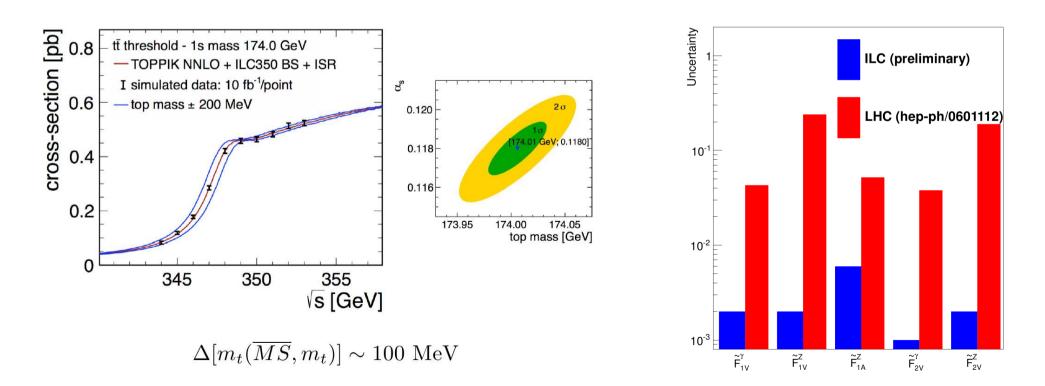

Consider the long-term ILC program.

The TDR is the beginning. It sets a new level of accuracy dominated by statistical errors.

Improve the TDR uncertainties by more running, and by luminosity upgrades foreseen in the TDR.

| Nickname   | Ecm(1) | Lumi(1)     | + | Ecm(2) | Lumi(2)     | + | Ecm(3) | Lumi(3)       |
|------------|--------|-------------|---|--------|-------------|---|--------|---------------|
|            | (GeV)  | $(fb^{-1})$ |   | (GeV)  | $(fb^{-1})$ |   | (GeV)  | (fb $^{-1}$ ) |
| ILC(250)   | 250    | 250         |   |        |             |   |        |               |
| ILC(500)   | 250    | 250         |   | 500    | 500         |   |        |               |
| ILC(1000)  | 250    | 250         |   | 500    | 500         |   | 1000   | 1000          |
| ILC(LumUp) | 250    | 1150        |   | 500    | 1600        |   | 1000   | 2500          |

### **ILC Upgrades Envisaged**

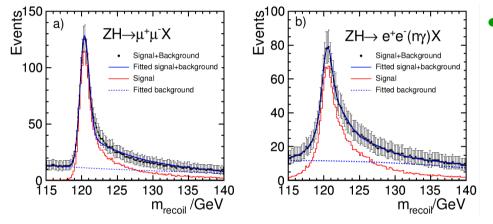



# **Top Physics**

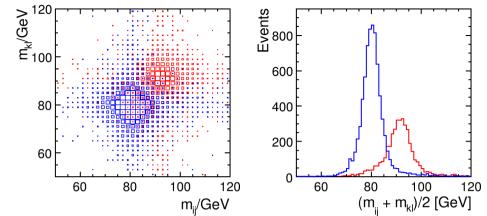
- Most important goals of the ILC program on the top quark are :
  - $_*$  measure the genuine top quark mass  $\equiv$  fundamental parametre
  - \* search for signals of top-Higgs compositeness

(similar opportunities may exist w.r.t. W-boson)

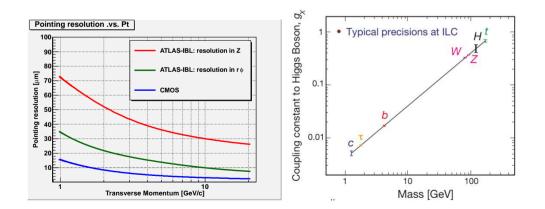
\* search for non-SM  $\gamma/Zt\overline{t}$  couplings  $\rightarrow$  form factors (polarisation !)



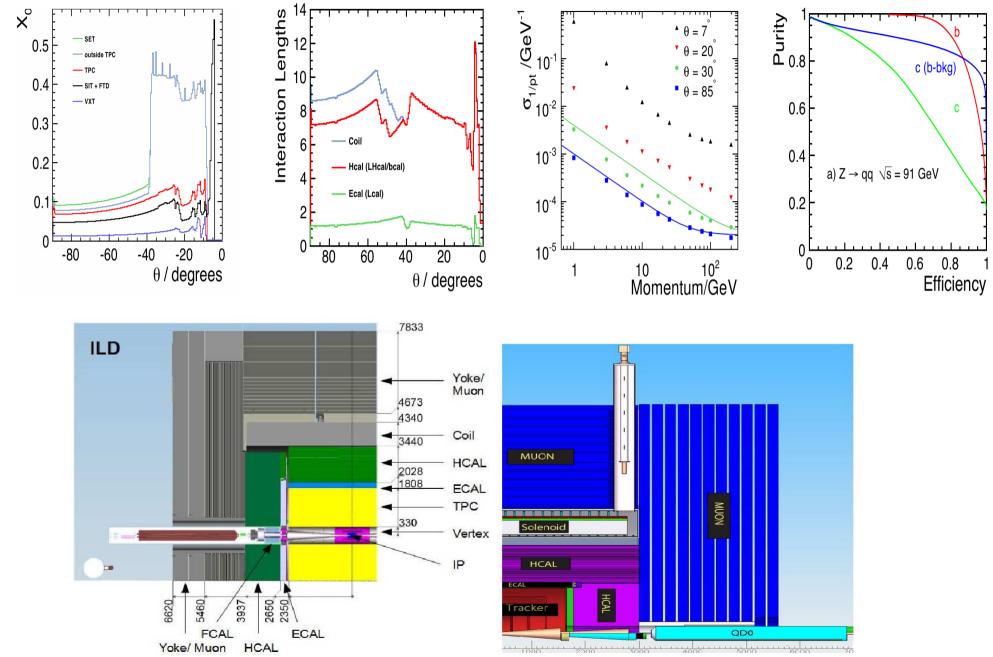

# **Experimental Challenges Addressed**


- PARTICLE FLOW : reconstruct ALL particles individually
  - k topological reconstruction of multi-jet events
    - $\Rightarrow$  R&D on highly segmented calorimeters :

ECAL (24 layers) & HCAL (48 layers)

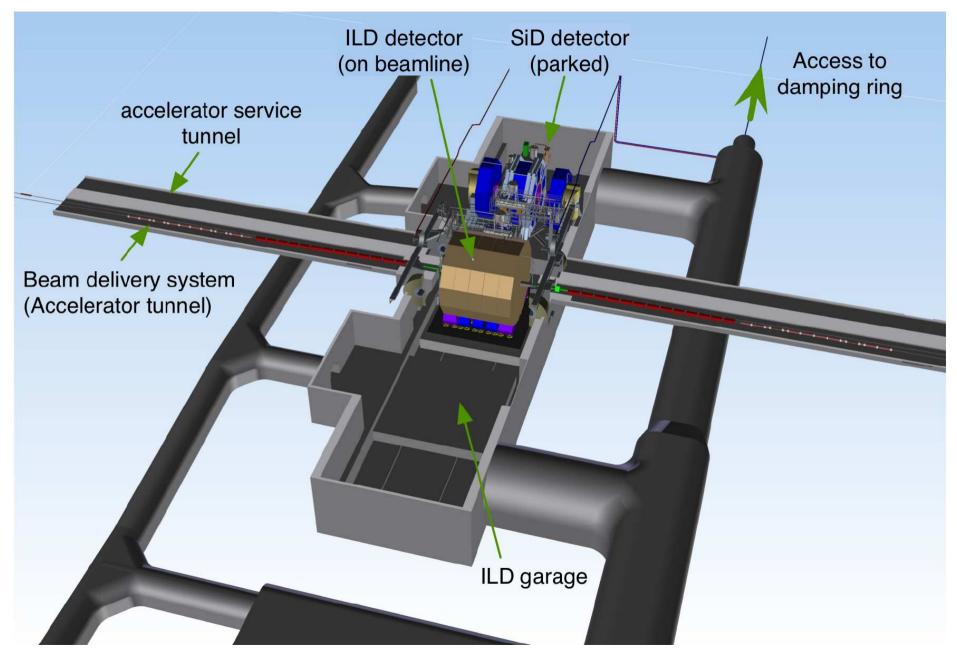

- $\triangleright$  Ex: W/Z separation in  $u \nu WW/ZZ$  final states
  - $\Rightarrow \Delta E/E \simeq$  3-4% at 100 GeV




- HIGHLY GRANULAR AND LIGHT VERTEX DETECTOR:
  - \* R&D on new pixel techno. & ultra-light mechanical supports
    - $\triangleright$  Ex: Hxx couplings from  $e^+e^- \rightarrow ZH$ 
      - $\Rightarrow \sigma_{IP} \lesssim 5 \oplus 10/p \cdot sin^{3/2} \theta \ \mu m$
- ▷ ▷ ▷ Power cycling ( $\equiv$  saving) exploiting machine duty cycle (< 1%)



- HIGH RESOL. CHARGED PART. MOMENTUM RECONSTR.:
- \* R&D on very light high resolution tracking system : mainly TPC (ILD) (also Si-strips)  $\rhd \ \, \text{Ex:} \ e^+e^- \rightarrowtail ZH \Rrightarrow M_H^2 = S + M_Z^2 - 2 \cdot E_Z \cdot \sqrt{S} \\ \implies \sigma_{1/P_t} \simeq 2 \cdot 10^{-5} GeV^{-1}$




### **Detector Characteristics**

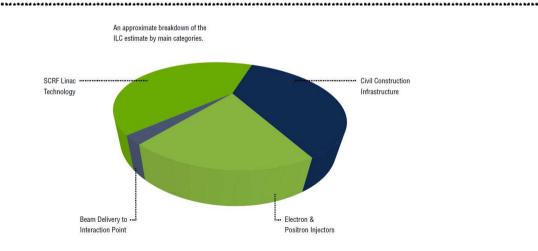


29

# **Interaction Region**



# **Refereence Design Report : ILC Machine Costing**


#### What are the numbers?

The following figures are the base VALUE and LABOUR quantities that can be translated into costs, by using a given national costing method:

|                       | *************************************** | ********************************** |
|-----------------------|-----------------------------------------|------------------------------------|
| SHARED VALUE =        | 4.87 Billio                             | n ILC VALUE UNITS                  |
| SITE-DEPENDENT VALU   | E = 1.78 Billio                         | n ILC VALUE UNITS                  |
|                       |                                         |                                    |
| TOTAL VALUE =         | 6.65 Billio                             | on ILC VALUE UNITS                 |
| (shared + site-depend | ent)                                    |                                    |
|                       |                                         |                                    |
| LABOUR =              | 22 million person-hours =               | 13,000 person-years                |
|                       | (assuming 1700 person-ho                | urs per person-year)               |
|                       |                                         |                                    |
| 1 ILC VALUE UNIT -    | 1  US Dollar(2007) = (                  | 9.82 Euros $= 117$ Von             |

1 ILC VALUE UNIT =

1 US Dollar (2007) = 0.83 Euros = 117 Yen



What does the estimate include and exclude?

The VALUE and LABOUR amounts include:

- construction of a 500 GeV machine and the essential elements to enable an optional future upgrade to 1 TeV;
- tooling-up industry, final engineering designs, and construction management;
- construction of all conventional facilities including tunnels, surface buildings, detector assembly buildings, underground experimental halls, and access shafts: and
- explicit labour including that for management and administrative personnel.

The VALUE and LABOUR amounts exclude:

- engineering, design or preparation activities that must be accomplished before project funding (such as R&D), proof-of-principle, and prototype tests;
- surface land acquisition or underground easement costs:
- detectors, which are assumed to be funded by a separate agreement;
- contingencies for risks; and
- escalation (inflation).

# Alternatives à l'ILC

- Plusieurs alternatives à l'ILC ont été considérées : CLIC, TLEP, ...
  - $\hookrightarrow$  Plusieurs critères entrent en jeu dans la comparaison
- 5 critères principaux :
  - \* maturité du projet sous-jacente aux performances annoncées (coût, accélérateur, détecteurs)
  - \* calendrier et opportunité scientifique
  - \* cadre politique favorable à la réalisation du projet  $\Rightarrow$  opportunité
  - \* valeur ajoutée scientifique du projet par rapport aux projets plus avancés
  - \* prise en compte des conditions économiques : P et bridage des performances
- 3 critères annexes :
  - \* forces et expertises des communautés intéressées (dans les 3 régions)
  - \* degré de consensus mondial pour le projet
  - \* impact sur le renforcement politique de la discipline