R&D Activities at IN2P3 for a Vertex Detector suited to ILC

M. Winter (PICSEL group of IPHC-Strasbourg)

CONSEIL SCIENTIFIQUE, IN2P3, 30-31 January 2014

Outline

- Requirements and topics addressed
- Status of CPS development for running at $\sqrt{s} \lesssim$ 500 GeV (0.35 μm process)
- Improvements coming from 0.18 μm CMOS process

 \hookrightarrow fast CMOS sensor (AROM) with μs level timestamping

- 2-sided ladder developments
- Plans for the coming years
- Summary

ILC Vertexing Performance Goals

- CMOS PIXEL SENSORS (CPS) pioneering devt triggered
 by ILC vertex detector requirements :
 - * unprecedented granularity & material budget (very low power)
 - $\ast\,$ much less demanding running conditions than at LHC
 - \Rightarrow alleviated read-out speed & radiation tolerance requests
 - $_{*}\,$ ILC duty cycle \sim 1/200 $\,$
 - \Rightarrow power saving by power pulsing sub-systems
- Vertexing goal:
 - * achieve high efficiency & purity flavour tagging \rightarrow charm & tau, jet-flavour !!! $\rightarrow \sigma_{R\phi,Z} \leq 5 \oplus 10/p \cdot sin^{3/2}\theta \ \mu m$ \triangleright LHC: $\sigma_{R\phi} \simeq 12 \oplus 70/p \cdot sin^{3/2}\theta$ \triangleright Comparison: $\sigma_{R\phi,Z}$ (ILD) with VXD
 - made of ATLAS-IBL or ILD-VXD pixels

The Central Conflict of Vertexing

A COMPLEX SET OF STRONGLY CORRELATED ISSUES :

* Charged particle sensor technology :

highly granular, thin, low power, swift pixel sensors

* Micro-electronics :

highly integrated, low power, SEE safe, r.o. μ circuits

*** Electronics :**

high data transfer bandwith (no trigger), some SEE tol. low mass power delivery, allowing for power cycling

*** Mechanics :**

rigid, ultra-light, heat but not electrical conductive, mechanical supports, possibly with $C_{\Delta t} \simeq C_{\Delta t}^{Si}$ very low mass, preferably air, cooling system micron level alignment capability

*** EM compliance :**

power cycling in high B field \Rightarrow F(Lorentz) higher mode beam wakefield disturbance \Rightarrow pick-up noise ?

* Radiation load and SEE compliance at T_{room}

 \Rightarrow reduced material budget

Topics Addressed by the R&D

- VERTEX DETECTOR CONCEPT :
 - * Cylindrical geometry based on 3 concentric 2-sided layers
 - * Layers equipped with 3 different CMOS Pixel Sensors (CPS)
- PIXEL SENSOR DEVELOPMENT:
 - * Exploit CPS potential & IPHC expertise
 - * R&D performed in synergy with other applications
 - \rightarrow EUDET-BT, STAR, ALICE, CBM, ...
 - * CPS \equiv unique technology being simultaneously granular, thin, integrating full FEE, industrial & cheap
 - * Address trade-off btw spatial resolution & read-out speed
- DOUBLE-SIDED LADDER DEVELOPMENT:
 - * Develop concept of 2-sided ladder using 50 μm thin CPS
 - Develop concept of mini-vectors providing high spatial resolution & time stamping
 - * Address the issue of high precision alignment& power cycling in high magnetic field

DEVELOPMENT OF CMOS SENSORS

STAR-PXL HALF-BARREL :

- **20 ladders (0.37% X**₀)
- 200 sensors
- **180**•10⁶ pixels
- $\circ~$ air flow cooling : ${\rm T}\lesssim {\rm 35^\circ C}$
- $\circ \sigma_{sp} < 4 \, \mu m$
- \circ rad. load \gg ILC values
- $\mathbf{t}_{r.o.} \simeq \mathbf{190} \ \mu s$ \hookrightarrow ILC : O(10) μs !

Installed in January 2014

State-of-the-Art: MIMOSA-28 for the STAR-PXL

- Main characteristics of ULTIMATE (\equiv MIMOSA-28):
 - * rolling shutter read-out derived from EUDET BT chip: MIMOSA-26
 - * 0.35 μm process with high-resistivity epitaxial layer
 - * column // architecture with in-pixel cDS & amplification
 - * end-of-column discrimination & binary charge encoding
 - * on-chip zero-suppression
 - * active area: 960 colums of 928 pixels (19.9 \times 19.2 mm²)
 - * pitch: 20.7 $\mu m \rightarrow \sim$ 0.9 million pixels \hookrightarrow charge sharing $\Rightarrow \sigma_{sp} \gtrsim$ 3.5 μm
 - * JTAG programmable

*
$$t_{r.o.} \lesssim$$
 200 μs (\sim 5×10³ frames/s) \Rightarrow suited to >10⁶ part./cm²/s

- * 2 outputs at 160 MHz
- $m st \sim$ 150 mW/cm 2 power consumption
- * N \leq 15 e⁻ ENC at 30-35° C
- $* \epsilon_{det}$ versus fake hit rate \longrightarrow \longrightarrow \rightarrowtail
- * Radiation tolerance : $3 \cdot 10^{12} n_{eq}$ /cm² & 150 kRad at 30-35° C
- * Detector construction under way (40 ladders made of 10 sensors)
- ▷▷▷ 1st step: Commissioning of 3/10 of detector completed at RHIC with pp collisions in May-June 2013

▷▷▷ next step: Start of physics with full detector in Feb. 2014

Mimosa 28 - epi 20 um - NC

CMOS Pixel Sensors for the ILD-VXD (1/3)

- Two types of CMOS Pixel Sensors :
 - * Inner layers (\lesssim 300 cm²) :

Priority to read-out speed & spatial resolution

- \hookrightarrow small pixels (16×16 / 80 μm^2)
 - with binary charge encoding
 - \hookrightarrow t $_{r.o.}$ \sim 50 / 10 $\mu s;~\sigma_{sp}\lesssim$ 3 / 6 μm
- * Outer layers (\sim 3000 cm²) :

Priority to power consumption and good resolution

 \hookrightarrow large pixels (35×35 μm^2)

with 3-4 bits charge encoding

 \hookrightarrow t_{r.o.} ~ 100 $\mu s; \sigma_{sp} \lesssim$ 4 μm

- 2-sided ladder concept for inner layer :
 - \rightarrow PLUME collaboration
 - * Square pixels (16×16 μm^2) on internal ladder face (σ_{sp} < 3 μm)
 - * Elongated pixels (16×64/80 μm^2) on external ladder face (t_{r.o.} ~ 10 μs)

* Total VXD instantaneous/average power < 600/12 W (0.18 μm process)

CMOS Pixel Sensors for the ILD-VXD (2/3)

• From the STAR-PXL to the ILC-VXD :

Detector	σ_{sp}	t_{int}	Dose $(30^{\circ}C)$	Fluence $(30^{\circ}C)$
STAR-PXL	\gtrsim 3.5 μm	190 μs	150 kRad	$3\cdot 10^{12}$ n $_{eq}$ /cm 2
ILD-VXD/In	$<$ 3 μm	50/10 μs	< 100 kRad	\lesssim 10 11 n $_{eq}$ /cm 2
ILD-VXD/Out	\lesssim 4 μm	100 μs	< 10 kRad	\lesssim 10 10 n $_{eq}$ /cm 2

• Final "500 GeV" CPS prototypes : fab. in Winter 2011/12 (0.35 μm process for economic reasons)

* MIMOSA-30: inner layer prototype with 2-sided read-out

← one side : 256 pixels (16×16 μm^2) other side : 64 pixels (16×64 μm^2)

- * MIMOSA-31: outer layer prototype \hookrightarrow 48 col. of 64 pixels (35×35 μm^2)
 - ended with 4-bit ADC

 \triangleright \triangleright \triangleright

CMOS Pixel Sensors for the ILD-VXD (3/3)

- MIMOSA-30: prototype for ILD-VXD innermost layer ▷ ▷ ▷
 - st 0.35 CMOS μm process with high-resistivity epitaxy
 - * in-pixel CDS, rolling shutter read-out, binary sparsified output
 - st columns length \simeq final sensor (4-5 mm long)
 - * high resolution side : pixels of 16×16 $\mu m^2 \Rrightarrow~$ expect $\sigma_{sp} <$ 3 μm
 - 128 columns (discri) & 8 col. (analog) of 256 rows
 - * read-out time \lesssim 50 μs
 - * time stamping side : pixels of 16×64 $\mu m^2 \Rightarrow t_{r.o.} \sim$ 10 μs
 - (expect $\sigma_{sp}\sim$ 6 μm)
 - 128 columns (discri) and 8 col. (analog) of 64 rows
 - * lab tests positive : N \sim 15 e $^-$ ENC & discri. all OK for $t_{r.o.} = 10~\mu s$
 - * beam tests (CERN-SPS) in July '12 $\Rightarrow \sigma_{sp}$ \triangleright
- MIMOSA-31: prototype for ILD-VXD outer layers

* pixels of 35×35 μm^2 (power saving) \triangleright \triangleright

* 48 columns of 64 pixels ended with 4-bit ADC (1/10 of full scale chip)

$$\hookrightarrow$$
 expect $\sigma_{sp}\lesssim$ 3.5 μm

* $t_{r.o.} \sim$ 10 μs (1/10 of full scale chip ightarrow ~ 100 μs)

Acceleration of Frame Read-Out

- Motivations for faster read-out:
 - * robustness w.r.t. predicted 500 GeV BG rate (keep inner radius small, ...)
 - * standalone inner tracking capability (e.g. soft tracks)
 - * compatibility with high-energy running: expected beam BG at $\sqrt{s} \gtrsim$ 1 TeV \simeq 3–5imesBG (500 GeV)
- How to accelerate the elongated pixel read-out
 - * elongated pixel dimensions allow for in-pixel discri. $\Rightarrow \geq$ 2 faster r.o.
 - * read out simultaneously 2 or 4 rows \Rightarrow 2-4 faster r.o./side
 - * subdivide pixel area in 4-8 sub-arrays read out in // \Rightarrow 2-4 faster r.o./side
 - \triangleright 0.18 μm process needed: 6-7 ML, design compactness, in-pixel CMOS T, ...
 - * conservative step: 2 discri./col. end (22 μm wide) \Rightarrow simult. 2 row r.o.

Expected VXD performances at 1 TeV (and 0.5 TeV)

Layer	σ_{sp}	t_{int}	Occupancy [%]	Power
	MIMOSA/AROM	MIMOSA/AROM	1 TeV (0.5 TeV)	inst./average
VXD-1	3 / 5-6 μm	50 / 2 μs (10 μs)	4.5(0.9) / 0.5(0.1)	250/5 W
VXD-2	4 / 10 μm	100 / 7 μs (100 μs)	1.5(0.3) / 0.2(0.04)	120/2.4 W
VXD-3	4 / 10 μm	100 / 7 μs (100 μs)	0.3(0.06) / 0.05(0.01)	200/4 W

ALICE-ITS Upgrade

- 2 alternative sensors developped :
 - * Baseline : **ASTRAL** (in-pixel discri.)
 - $\hookrightarrow \gtrsim$ 15 μs , 85 mW/cm 2
 - * Back-up : **MISTRAL** (end-of-col. discri.) $\hookrightarrow \gtrsim$ 30 μs , < 200 mW/cm²
- All main components validated in 2013 :
 - * sensing node properties
 - * in-pixel ampli+CDS
 - * in-pixel discriminators
 - * rolling-shutter with end-of-col. discri.
 - * simultaneous 2-row read-out
 - * sparse data scan
 - * programmable chip steering (JTAG)
 - → outcome integrated in ITS-TDR

CPS fabricated in 2012/13 in 0.18 μm Process

SNR of Pixel Array

- MIMOSA-22THRa1 exposed to \sim 4.4 GeV electrons (DESY) in August 2013
- Analog outputs of 8 test columns (no discri.)

 \hookrightarrow SNR with HR-18 epitaxy, at T=30 $^{\circ}$ C

- * Noise determination with beamless data taking
- * Ex: S2 (T gate L/W=0.36/1 μm against RTS noise) S1 (T gate L/W=0.36/2 μm against RTS noise)
- Results :
 - * Charge collected in seed pixel \simeq 550 e^-
 - * Detection efficiency of S1 & S2 \gtrsim 99.5% while Fake rate $\leq O(10^{-5})$ for Discrimination Thresholds in range $\sim 5N \rightarrow > 10N$
 - * Mitigation of Fake Hits due to RTS noise fluctuations confirmed
 - * A few 10^{-3} residual inefficiency may come from BT-chip association missmatches and non-optimised cluster algorithme

Pixel Optimisation : Epitaxial Layer and Sensing Node

- Pixel charge coll. perfo. for HR-18 & VHR-20 (no in-pixel CDS) :

 - * 22×33 μm^2 (2T) pixels at 30°C

Results:

- \diamond only \sim 0.1 % of cluster seeds exhibit SNR \lesssim 7–8
- \diamond SNR(VHR-20) \sim 5-10% higher than SNR(HR-18)

MIMOSA 34, Signal/Noise

50

100

150

MIMOSA 34, Signal/Noise

Pixel charge coll. perfo. for 2 diff. sensing nodes:

- * 10.9 μm^2 large sensing diode
- * 8 μm^2 cross-section sensing diode underneath 10.9 μm^2 large footprint

Results: \Rightarrow

 \diamond 8 μm^2 diode features nearly 20% higher SNR(MPV) & much less pixels at small SNR (e.g. SNR <10) \hookrightarrow Q $_{clus}$ \simeq 1350/1500 e $^-$ for 8/10.9 μm^2 \Rightarrow marginal charge loss with 8 μm^2 diode

 \diamond radiation tolerance to 250 kRad & 2.5 \cdot 10¹² n_{eq}/cm² at 30°C OK

0.03

0.025

0.02

0.015

0.01

0.005

Spatial Resolution

- Beam test (analog) data used to simulate binary charge encoding :
 - * Apply common SNR cut on all pixels using <N>
 - \hookrightarrow simulate effect of final sensor discriminators
 - * Evaluate single point resolution (charge sharing) and detection efficiency vs *discriminator threshold* for 20x20; 22x33; 20x40; 22x66 μm^2 pixels

• Comparison of 0.18 μm technology (> 1 $k\Omega \cdot cm$) with 0.35 μm technology (\lesssim 1 $k\Omega \cdot cm$)

Process ⊳	0.35 μm	0.18 μm			
Pixel Dim. [μm^2]	20.7×20.7	20×20	22×33	20×40	22×66
$\sigma^{bin}_{sp}[\mu m]$	3.7 ± 0.1	3.2 ± 0.1	\sim 5	5.4 ± 0.1	\sim 7

DEVELOPMENT OF ULTRA-LIGHT DOUBLE-SIDED LADDERS

Sensor Integration in Ultra Light Devices

- 2-sided ladders with time stamping for the ILD-VXD :
 - * manyfold bonus expected from 2-sided ladders: alignment, pointing accuracy (shallow angle), compactness, redundancy, etc.
 - * studied by PLUME coll. (Bristol, DESY, IPHC) & AIDA (EU)
 - \hookrightarrow Pixelated Ladder using Ultra-light Material Embedding
 - * square pixels for single point resolution on beam side
 - * elongated pixels for 5-50 times shorter r.o. time on other side
 - * correlate hits generated by traversing particles
 - $*\,$ expected total material budget \sim 0.3 % X $_0$
- Prototypes fabricated :
 - * based on 2×6 MIMOSA-26 sensors mounted on each ladder face
 - * mechanical support : 2 mm thick low density SiC foam
 - * total material budget \sim 0.6 % X $_0$
 - * beam tests at CERN-SPS (traversing m.i.p.) in Nov. '11

2-Sided Ladder Beam Test Results

• PLUME prototype-2010 tested at SPS in Nov. 2011:

- * Beam telescope : 2 arms, each composed of 2 MIMOSA-26 sensors
- * DUT : 1 PLUME ladder prototype (0.6 % X_0)
 - \hookrightarrow 6 MIMOSA-26 sensors on each ladder face (> 8 Mpixels)
- * CERN-SPS beam : \gtrsim 100 GeV " π^- " beam
- * BT (track extrapolation) resolution on DUT \sim 1.8 μm
- * Studies with PLUME perpendicular and inclined (\sim 36°) w.r.t. beam line

* Preliminary results (no pick-up observed): combined impact resolution & pointing resolution

• New PLUME proto. under construction with 0.35 % X_0 (X-sect.) \rightarrow beam tests in Q4/2014 (SPS ?)

CMOS Pixel Sensors (CPS): A Long Term R&D

Initial objective: ILC, with staged performances

& CPS applied to other experiments with intermediate requirements

EUDET 2006/2010

ILC >2020 International Linear Collider

EUDET (R&D for ILC, EU project) STAR (Heavy Ion physics) CBM (Heavy Ion physics) ILC (Particle physics) HadronPhysics2 (generic R&D, EU project) AIDA (generic R&D, EU project) FIRST (Hadron therapy) ALICE/LHC (Heavy Ion physics) EIC (Hadron physics) CLIC (Particle physics) BESIII (Particle physics)

....

CBM >2018 Compressed Baryonic Matter

STAR 2013 Solenoidal Tracker at RHIC

ALICE 2018 A Large Ion Collider Experiment

Plans for the Upcoming Years

- R&D PLANS ON CPS :
 - $_{*}$ realise full scale sensor in 0.18 μm techno. : ASTRAL (\lesssim 20 μs) & MISTRAL (\gtrsim 30 μs)
 - * achieve O(1) μs time stamping with elongated pixels \Rightarrow bunch tagging
 - $_{*}$ validate concept with 3-bit charge encoding ADC in 0.18 μm techno.
 - * study alternative approach using Fine Pixel CPS (4-5 μm pitch)
- R&D of 2-sided ladders :
 - * validate ladder design resulting in 0.35 % X₀ material budget
 - * validate ladder concept based on fast/precise sensors on 1st/2nd face (e.g. ASTRAL & MIMOSA-26)
 - * validate power pulsing in high magnetic field
 - $\ast\,$ investigate 2-sided ladder design allowing for < 0.3 % X_{0}
- FRAMEWORK : R&D CONTINUATION UNTIL EARLY 2020s
 - * ALICE-ITS until 2016 * CBM-MVD until 2018
 - * MIMOSA-26/-28 users : EUDET-BT, FIRST, EIC, NA-61, NA-63, BES-III,

biomedical & X-Ray -imaging, dosimetry, hadrontherapy, ...

* H2020, LIA, ...

Plans for the Upcoming Years

- 2014 :
 - * Sensors : realise & validate full scale architectures for ALICE-ITS (ASTRAL ans MISTRAL)
 - $\ast\,$ Ladders : realise and test 0.35 % X_0 2-sided ladder based on MIMOSA-26
- 2015:
 - * Sensors : realise final prototype for the ALICE-ITS
 - * Ladders : test of vertex detector "sector" \equiv 3 consecutive pairs of ladders on beam
- 2016:
 - * Sensors : production tests of ALICE-ITS sensors \rightarrow evolution towards CBM-MVD/FAIR (ASTRAL)
 - * Ladders : realise 2-sided ladder equipped with 2 different chips (e.g. ASTRAL / MIMOSA-26)
- 2017:
 - * Sensors : follow ITS production, production of sensors for CBM-MVD (FAIR)
 - * Ladders : beam tests of 2-sided ladder equipped with 2 different chips
- 2018 : Start realisation of large sensors dedicated to ILC VXD

Overview of the IPHC Team

- 4 PHYSICISTS :
 - * 2 University staff : J.Baudot, A. Besson
 - * 1 CNRS staff : M. Winter
 - * 1 Postdoc : A. Perez Perez
- 10 ELECTRONICS AND MICRO-TECHNICS ENGINEERS :
 - * PICSEL group: G. Claus, M. Goffe, Ch. Illinger, K. Jaaskelainen, M. Specht, M.Szelezniak
 - * Micro-technics group : M. Imhoff, O. Clausse, J.S. Pelle, F. Agnese
- 13 Chip designers :
 - * CNRS: Ch.Hu-Guo, C.Colledani, F.Morel, I.Valin, H.Pham, W.Dulinski, A.Dorokhov, G.Bertolone, A.Himmi
 - * University: G. Dozière
 - * 3 PhD students: T.Y. Wang, W. Zhao, Y. Zhou
- SCIENTIFIC PRODUCTION SINCE 2008 :
 - * 79 talks at international conferences
 - * 31 publications in NIM, IEEE, etc. journals
 - * 9 PhD theses defended since 2008 (3 under way)

SUMMARY

- R&D on CPS :
 - * Well established architecture achieved and implemented in STAR-PXL (0.35 μm CMOS process)
 - \hookrightarrow extendable to sensors suited to ILD-VXD \lesssim 500 GeV
 - * Not accessible with 0.35 μm process : standalone tracking, bunch tagging (SiD), 1 TeV running, etc.
 - \hookrightarrow 0.18 μm process accessed in 2011 should allow meeting these goals
 - * 2012-13 allowed assessing process & realising all major sensor architecture elements
 - \hookrightarrow Realisation of complete ASTRAL sensor in 2014 (ITS)
 - * Upcoming years : beyond 2014
 - Final ALICE-ITS sensor & CBM-MVD variant (include all main elements for ILD-VXD)
 - \hookrightarrow ILC dedicated sensors in 0.18 μm process from 2017/18 on
 - Investigate FPCPS delayed read-out approach
- 2-SIDED LADDERS : PLUME collaboration
 - $\ast~$ Prototype based on MIMOSA-26 sensors on the way to achieve 0.35 % X_0
 - * Upcoming years : beyond 2014
 - Validate concept of complementary sensors with ASTRAL/MIMOSA-26 & power pulsing in string mag. field
 - Assess added value of double-sided ladders
 - $\circ~$ Investigate possibilities to still reduced the ladder material budget < 0.3% X $_0$

BACK-UP SLIDES

Main Features of CMOS Sensors (CPS)

- P-type Si hosting n-type "charge collectors"
 - signal created in epitaxial layer (low doping):
 - Q \sim 70–80 e-h / $\mu m \mapsto$ signal \lesssim 1000 e $^-$
 - charge sensing through n-well/p-epi junction
 - excess carriers diffuse and/or drift to diode with help of reflection on boundaries with p-wells and substrate (high doping)
 - \Rightarrow continuous signal sensing (no dead time)
- hightarrow
 hightarrow
 hightarrow since a few years : high resistivity (> 1 $k\Omega \cdot cm$) epitaxial layer
- Prominent advantages of CMOS sensors :

- ♦ granularity : pixels of \leq 10×10 $\mu m^2 \Rightarrow$ high spatial resolution (e.g. \leq 1 μm if needed)
- \diamond low material budget : sensitive volume \gtrsim 10 20 μm \Rightarrow total thickness \lesssim 50 μm \Rightarrow thinning \lesssim 50 μm
- ♦ signal processing μ circuits integrated in the sensors \Rightarrow compacity, high data throughput, flexibility, etc.
- ◊ industrial mass production ⇒ cost, industrial reliability, fabrication duration, multi-project run frequency,

technology evolution, ...

- \diamond operating conditions : from $\ll 0^{\circ}$ C to $\gtrsim 30-40^{\circ}$ C
- Main limitation of the approach : CMOS industry addresses a market far from HEP needs
 - $\diamond~$ fab. process parametres not optimised to fully exploit the potential of CPS
 - **BUT** recently accessible processes (epitaxial layer, feature size) have opened up new perspectives

CMOS Pixel Sensors: Present Status

- ESTABLISHED ARCHITECTURE :
 - $\circ~$ CMOS process : 0.35 μm , 2-well, 4 ML, 15/20 μm & \sim 1 k $\Omega \cdot cm$ EPI
 - o in-pixel CDS
 - end-of column discri. (binary encoding)
 - single-row rolling shutter read-out
 - sparse data scan on chip periphery
 - \circ 18.4/20.7 μm pitch \Rightarrow \gtrsim 3.3.5 μm resolution
 - \circ used in EUDET BT (115 μs) & STAR-PXL (190 μs)

recent step: Commissioning of 3/10 STAR-PXL completed at RHIC with pp & ArAr collisions in May-June 2013

- New process under study since 2011/12 :
 - $\circ~$ CMOS process : 0.18 μm , 4-well, 6 ML, 15/40 μm & \sim 1-6 k $\Omega \cdot cm$ EPI
 - \circ allows in-pixel discrimination \Rightarrow faster read-out & reduced power, etc.
 - $\circ~$ development driven by ALICE-ITS upgrade & CBM-MVD/FAIR (\sim 20 μs)
 - recent step: Assessment of CMOS proces detection performances & validation of rolling-shutter read-out completed in 2013

STAR-PXL-3SECT INSERTION PP & ARAR RUN IN MAY-JUNE'13

CPS : Present R&D

- Faster read-out for :
- robustness w.r.t. predicted 500 GeV BG rate
 (keep small inner radius, ...)
- * standalone inner tracking capability (e.g. soft tracks)
- * compatibility with high-energy running: expected beam BG at $\sqrt{s}\gtrsim$ 1 TeV \simeq 3–5 \times BG (500 GeV)
- Moving to a 0.18 μm imaging CMOS process :
 - * Deep P-well & 6 metal \Rightarrow in-pixel discri. (AROM sensor)
 - * Epi. layer: 18–40 μm thick, $ho \sim$ 1–6 k $\Omega \cdot cm$
 - * Stiching \Rightarrow multi-chip slabs (yield ?)

12 diff. chips exploring sensing + r.o. fab. in 2013

• 2013 (beam) test results :

ILD-VXD : DBD

Fine Pixel CCDs: Main Features

- PROMINENT FEATURES OF FPCCDS:
 - $\circ\,$ Signal charge created in a fully depleted \sim 15 μm thin epitaxial layer
 - \Rightarrow limited charge spread
 - Very small pixels (5imes5 μm^2):
 - * $\sigma_{sp}\lesssim$ 1 μm
 - * beam related BG rejected by pattern recognition
 - $\circ\,$ High-res epi and small pixels (occupancy/BX \sim few ppm) used to integrate over full train duration
 - \Rightarrow devt addresses very low power ADCs
 - $\circ~$ Can be thinned down to 50 μm
 - Need -40°C cooling for radiation tolerance purposes
 - \Rightarrow impact on material budget (modest ?)
- SEVERAL ESSENTIAL R&D TOPICS ADDRESSED :
 - \circ 5×5 μm^2 pixel matrix detection performances
 - Low power, large bandwidth, r.o. electronics (e.g. 8-bit? ADC)
 - $\circ~$ Low mass CO $_2$ cooling
- Approach not limited to CCDs: should work with CMOS sensors (cost effective, smaller pixels, cooling)

Chronopixel Sensors: Main Features

- PROMINENT FEATURES OF CMOS PIXEL SENSORS:
 - CMOS Pixel Sensor with in-pixel (sgle BX) 12-bit time stamping
 - \Rightarrow tracking based on Vx detector seed (SiD option)
 - Read-out delayed inbetween consecutive bunch trains (power saving)
 - Double-hit timestamping possibility (25imes25 μm^2 pixels)
- REQUIRES A VERY ADVANCED (MIXED ?) CMOS TECHNOLOGY :
 - $\circ\,$ VDSM (\leq 90 nm, with deep P-well), for high μ circuitry density
 - \hookrightarrow trade-off: pixel size (occupancy) vs in-pixel circuitry complexity
 - Epitaxial layer: thick and resistive enough for cluster spread and SNR
- CUSTOMISED DESIGN IN INDUSTRY (SARNOFF)
 - \Rightarrow cost, design optimisation possibility, devt timeline, ...

DEPFET Sensors: Main Features

- PROMINENT FEATURES OF DEPFET PIXEL SENSORS:
 - Signal charge created in a fully depleted Si substrate and collected by a n-type node ("internal gate") burried under a p-channel FET, delivering a current modulated (∞) by the charge collected on the node
 - External gate to enable read-out \Rightarrow r.o. chips
 - Clear contact removes charge from internal gate \Rightarrow switcher chip
 - Steering and signal processing ASICs bonded on ladder edge & end
 - \circ Read-out based on rolling shutter mode \Rightarrow low power
 - High granularity \Rightarrow micronic spatial resolution
 - $\circ~$ Can be thinned down to 50 μm
 - $\circ~$ Sensors are embedded in Si mechanical support
 - \Rightarrow low material budget
- TECHNOLOGY UNDER PROD/DEVT FOR THE BELLE-II VERTEX DETECTOR:
 - Several specs close to those of the ILD-VXD inner layer (e.g. $< 0.2\% X_0$) \hookrightarrow granularity \times speed still to improve

Activités du Groupe PICSEL

- CAPTEURS À PIXELS CMOS (CPS) POUR LE STAR-PXL:
 - \circ 400 capteurs MIMOSA-28 (9·10 5 pix,, 200 μs , $\sigma_{sp} \sim$ 3.5 μm)
 - o installation d'un détecteur de 3 sect./10 le 8 mai 2013 à RHIC
 ▷▷▷
 → mise en service avec coll. pp depuis le 9 mai
 - implication IPHC actuelle: 1 IR Elec. (+ suivi des concepteurs)
- CPS pour l'ITS-2020 d'ALICE: MISTRAL (30 μs) & ASTRAL (\lesssim 15 μs)
 - \circ 7 (baseline) ou 3 couches (\leq 9 m²) pixellisées (\leq 10¹⁰ pixels)
 - $\circ~$ dévt de CPS en techno. CMOS-0.18 μm en coll. avec CERN et al.
 - \hookrightarrow 2012: techno validée au niveau du pixel (1 MRad \oplus 10¹³ n $_{eq}/cm^2$ à 30°C)
 - o 2013-14: prototypage pour valider l'architecture globale avec sparsification
 - \circ implication IPHC actuelle: 6-7 Ing. μ Elec., 3-4 Ing. Elec., 3 phys. (1 prof.)
 - coll. avec Univ. Frankfurt pour le MVD(CBM): même CPS (vide, T < 0° C)
- DÉVTS POUR UN DÉT. DE VERTEX À L'ILC: DBD EN Q1/2013
 - $\,\circ\,$ adaptation des CPS(ALICE) pour ILC-500 puis ILC-1000 (\sim 2 $\mu s)$
 - o dévt d'échelles ultra-légères simple- & double-face
 - o études d'optimisation de la géométrie du détecteur

Activités du Groupe PICSEL

- ACCOMPAGNEMENT DES APPLICATIONS DE MIMOSA-26 (Télescope EUDET → 6-7 exemplaires) :
 - \circ Dét. Vx (FIRST/GSI) \circ Proto. MVD (CBM/FAIR) \circ Dét. Vx (NA-61/SPS \geq 2013)
 - Dosimétrie en ligne à protons (ANR QAPIVI, etc.)
- CONTRIBUTIONS AUX APPLICATIONS DE MIMOSA-28 (STAR-PXL) :
 - Imageur protons (TraCal) au GSI/Bio
 Proto. télescope AIDA (WP-9.3)
 - Proto. tracker BESS-3 (FCPPL)
- AIDA (FP-7)
 - dévt d'un capteur abouté de $4 \times 6 \text{ cm}^2$ pour télescope final
 - ←→ démonstrateur Dét. Vx eRHIC (LDRD BNL)
 - o réalisation d'un secteur simplifié de Dét. Vx pour l'ILC équipé d'échelles PLUME
 - ←→ études d'alignement micronique
 - o dévt d'une connectique de haute densité pour capteurs à 2 couches (3DIT)
 - \hookrightarrow coll. avec institut Fraunhofer
- PROBIM (COLL. IMNC): EN ÉMERGENCE
- \circ imagerie β avec sources internes : dépôt éventuel d'un projet ANR en 2014
- Imageur X: activité en emergence
 - \circ dévt d'un *spectromètre à rayons X* dérivé de MISTRAL/ASTRAL (couche épitaxiée de 30–40 μm hautement résistive

