Simultaneous astrometry of an image set : status report

Pierre Astier LPNHE / IN2P3 / CNRS , Universités Paris 6&7.

15/05/2015

Objectives

- Fitting astrometry of an image set using common objects (and possibly and external reference catalog)
 - Prior to stacking
 - Prior to simultaneous measurements on an image set (e.g. transient light curves)
 - Deriving an "instrument model"

Sketch

- Our images are already equipped with a catalog, and a rough WCS
- Stage 1 : associate all the catalogs
- Stage 2 : associate with an external position catalog, if needed (set the sideral frame)
- Stage 3 : fit simultaneously
 - Mappings from input image coordinates to some common frame (→ WCS's)
 - Positions of the objects in common

Associating detections of the same object

The simple way :

- For each image
 - Load catalog and apply quality cuts
 - Match it to the "Object catalog" (in the tangent plane)
 - Add the unmatched objects to the "Object catalog"
- I know it is fast and efficient (with a 2D O(N1 log(N2)) matching)
- One could be worried by the outcome depending in principle of the order of input images.
- In practice, this is not serious if the WCS's are accurate enough (1-2 pixels) and blends are ignored (as they should).

Fit : Least Squares

$$\chi^{2}_{meas} = \sum_{c,d} [M_{c}(X_{c,d}) - P_{c}(F_{i})]^{T} W_{c,d} [M_{c}(X_{c,d}) - P_{c}(F_{i})]$$
Measurement
terms
c,d : calexp, detection
 M_{c} : mapping (pixel \rightarrow TP), one per calexp
 $X_{c,d}$: measured position of the object (pixels)
 P_{c} : projection (sky \rightarrow TP)
 $W_{c,d}$: Measurement weight (1/var), transformed through M_c.
 F_{i} : (sky) position of the object (measured as $X_{c,d}$)
 $\chi^{2}_{ref} = \sum_{j} [P(F_{j}) - P(R_{j})]^{T} W_{j} [P(F_{j}) - P(R_{j})]$
Reference
terms

- P : some (user-provided) projection
- \mathbf{F}_{i} : (fitted) sky position of the object
- R_i : sky position of the object fitted (reference catalog)
- $W_{Astrometry-stack j}$: R_j weight (1/var), transformed through P

Least Squares (2)

$$\chi^{2}_{meas} = \sum_{c,d} [M_{c}(X_{c,d}) - P_{c}(F_{i})]^{T} W_{c,d}[M_{c}(X_{c,d}) - P_{c}(F_{i})]$$
Measurement
terms
$$...$$

$$W_{c,d}: Measurement error, transformed through M_{c}.$$

$$... \rightarrow so W depends on some fitted parameters !$$
Yes, but in practice, the scale of M is extremely well known,
so this can be ignored.

$$\chi_{ref}^{2} = \sum_{j} [P(F_{j}) - P(R_{j})]^{T} W_{j} [P(F_{j}) - P(R_{j})]$$
Reference
terms
$$P : \text{some (user-provided) projection}$$

$$Why P(F_{j})-P(R_{j}) \text{ rather than just } (F_{j}-R_{j})?$$
because the distance on the sphere is **not** Euclidean

C

D

Least Squares (3)

$$\chi^{2}_{meas} = \sum_{c,d} [M_{c}(X_{c,d}) - P_{c}(F_{i})]^{T} W_{c,d} [M_{c}(X_{c,d}) - P_{c}(F_{i})]$$

- This setup accommodates the fit of mappings between images:
 - All the P_c are set to identity.
 - One of the M_c is set to identity.
 - No external catalog nor "reference terms".
- This yields the optimal mapping between images, given position measurements and their uncertainties.

Implementation

- Least squares with (mostly analytical) computation of derivatives (w.r.t positions and parameters).
- Sparse matrix algebra (Eigen3 package). Similar performance with Cholmod.
- About 1500 lines of new C++ code (~ 10 classes) to implement the fit and the model. Used existing (home-made) classes for everything else.
- The fit talks to the model via two abstract classes.

Outlier removal

- I have not found a **canned** small-rank update of Cholesky factorizations. The only one I know about is Cholmod providing a rank-1 update.
- So I have used the following trick: do not remove in a single pass 2 outliers that constrain the same parameter.
- Would require a lot of iterations to come to zero outlier removed.
- I was not that patient: I ran it only 4 iterations.

Trial run

- 15 Megacam r-band 300-s exposures on D3, observed over the same lunation. 540 Calexp's.
- Use USNO-A2 for the reference catalog.
- Ignore proper motions.
- Use Gaussian-weighted positions and associated errors.
- Strict selection of measurements (no flag at all, S/N>10), average of ~400 measurements/calexp
- All calexps have their own mapping parameters as if they all came from different instruments

Trial run

• \sim 32,500 objects, \sim 210,000 measurements.

Trial run : residuals

Residuals of the "measurement terms", these are internal residuals

Residuals vs mag

Use simplistic error model V= V_{meas} + (0.02 pix)²

Beware : residuals are **not** Studentized, and The number of measurement is not that large

A smaller constant term would help for the bright side, but not for the faint side

Overall : it could be much worse!

Second trial run: Suprime cam

120-s (i and z)-band exposures reduced by Augustin Guyonnet.12 exposures, guessed photometric scale. Exactly the same code.

Computer resources

- Execution time: for the 15 Megacam exposures:
 - Reading the (540) catalogs : ~ 100 seconds at 33% CPU
 - Associating : negligible
 - Fitting: <~ 20 s per iteration
 - Computing the derivatives : ~ 1 s
 - "Squaring" the Jacobian, i.e. $H = JJ^T$: ~ 3s
 - Factorize-solve-update (dim=75,510, nnz=17,164,700) ~13 s.
 - Partial fits (positions OR mappings) are solved instantly.

- Total: 125.137u 19.769s 3:40.44 65.7% (Xeon 2.3 GHz)

• Memory reaches ~ 1 GByte (not completely sure though)

To be done (at least):

- I still have to code the mapping model for a "rigid instrument". I would not be surprised if the residuals come out much larger. Have to think about relaxing rigidity.
- Study dispersions of faint objects (galaxies mostly).
- Proper motions, parallaxes ? the code to handle proper motions is there, but I have not implemented anything to detect "moving" stars.
- Output of mappings (i.e. WCS's)... Which format? Output of the catalog.

(Simplified) class diagram

