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 Toy Model of a Detector for EIC

arch 2001) in the context of

d accelerator will be needed”

ffstaetter (Snowmass2001)

e

  2/4/02

PLAN:

Revisit our toy model (cf. Whitepaper M
interaction regions design.

“Strong interaction between detector an

G.Ho
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TRANSPARENT versus OPAQUE TARGET
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General

entification

get remnants and jets

 “skew vacuum chambers”

cal, SiO2-fibers,...)

ls:

 200 MeV/c

 ±10 MeV/c
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Toy model goals:

• 4 π acceptance for a complete final state id

•  “spectroscopic resolution” resolution for tar

Machine requirements:

• beam divergence and crossing angle

• reasonable luminosity and backgrounds

• “active beam pipes”, “active collimators” and

Near beam detector requirements:

• rates, background rejection, resolution (spa

• special designs? (active beam pipes)

Compatibility of near beam detectors with other goa

•  p-A, A-A, polarization, high luminosity...
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Machine Requirements

ERA hi-lumi upgrade1:

”H. ibid.)

cs with HERA as eA collider workshop,

p

p
synchrotron
radiation

new

edium rigidity spectrometer
  2/4/02

In-beam spectrometers

Novel feature of the toy model? It comes from the H

 (“magnets inside detector - detector inside magnetsG.

1. cf. “Evolution of HERA detectors towards e A physics”, E.B., Physi
DESY 25/05/99
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Magnets inside detector ...
  2/4/02
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Spectrometer design parameters:

• aperture of medium and of high rigidity spectrometers

s
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• length of drift space  between spectrometer

•  ∫ B dl (fixed by beam optics)

• beam divergence (as low as possible)
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Detector Requirements

on beam (or same rigidity ion)

rπ0); hadron calo for

ting p+& ions; tracking for

adron calo for measuring
nded p; tracking for measuring

charged particles emitted in the
  2/4/02

Hadron-side
-main functions (left to right):

Romanpots (not on plan): diffractive scattering

High rigidity spectrometer: EM calo for nucleaγ(
measuring evaporation neutrons and identifica

measuring evaporation p+& ions

Medium rigidity spectrometer: EM calo forπ0s; h
wounded neutrons and identificating ions&wou

nuclearπ±, wounded p+ and ions

Rapiditygapπ-tagger: close the acceptance for
DIS process and tags diffractive events
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Toy model ~hadron-side~:

ft chambers (orµstrips) at center.

ty calorimeters (plastic or SiO2?)

rapidity gapπ−tagger
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-both spectrometer trackers using MWPC and dri

-scintillating fiber  calo for medium and high rigidi

-scintillating fiber tracker (“active beam pipe”) for 

101520 m
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Detector details

High Rigidity Spectrometer question: plastic or SiO2 fibers?

per and easier to build. Spacal
r spectator-neutron

ation resistant design than

ial resolution. Needed for heavy
  2/4/02

• Plastic has better energy resolution, is chea
type hadronic resolution (30%/√Ε) is needed fo
identification (D beam), but with a more radi
former H1 FNC.

• SiO2 is radiation hard and gives highest spat
ions (backed by dE/dx measurement?).

Arnaldi et al NIM A411 (1998) 1

SiO2 fiber in NA50
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active beam pipe:

fiber layers
  2/4/02

flattened pipened
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Toy model ~parton-side~  (good jet analysis, but not very high luminosities):

r inside magnet (=ℵ/23)

1 2 m

Spacal
DE
  2/4/02

• Barrel is TPC backed by gas EM calorimete

• Both endcaps are Spacal (=H1)

• µ−vertex provides small angle tracking
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Toy model ~lepton-side~ (left to right):

photoproduction or DIS
M calo confirms e- tagging.

 tags initial bremhstrahlung;
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D0
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electron tagger: tracker measure e- up to 10 GeV(
tagging) and closes acceptance for π’s; backing E

γ tagger: measure Bethe-Heitler spectrum and
receives copious synchrotron radiation.
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Toy Model:

• active beam pipe for electron tagger backed by Spacal on electron side

to a fewγ per bunch cross)

specka@poly.in2p3.fr
  2/4/02

• quartz fiber calorimeter forγ tagger (takes up 

Arnd E. SPECKA, Ecole Polytechnique, France
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Properties of new H1 SiO2 fiber luminometer (thanks to A.Specka for the plots!).
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detector see P.Gorodetzky et al
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Summary of Toy Model Parameters

n char. granularity

p ? X0

.02 X0 15x15µm

/✓E X0=1.7cm 3.5x3.5cm

/✓E X0=.84cm 4x4cm

/✓E 4.5 λ 20x20cm

p 0.2 X0 5x5mm

p 0.2 X0 1x1mm

%/✓E X0=.7cm 3x3cm

/✓E 7 λ 3x3cm

% .3 X0 0.5x2cm

/✓E X0=.84cm 2x300cm

/✓E X0=.5cm 2x2 cm
  2/4/02

detectors type δαxδβ precisio

central tracker TPC 10-3x10-3 σ/p=0.5%

µ_vertex Si 10-3x10-3

Barrel EM Gas 10-2x10-2 σ/E=18%

endcap EM Spacal 2÷1 3.10-3x3.10-3 σ/E=7%

had calo Inst.iron σ/E=90%

spectro track1 DC 10-3x10-3 σ/p=.02%

spectro track2 MWPC(1mm) 10-3x10-3 σ/p=.05%

spectro  caloEM Spacal 4÷1 2.10-4x2.10-4 a

a. overestimated for high rigidity spectro

σ/E=9.5

spectro calohad Spacal 4÷1 4.10-4x4.10-4 σ/E=30%

e&π-taggers sci.fiber 2.10-2x10-1 σ/E=1&5

e-tag calo Spacal 2÷1 σ/E=7%

γ-tagger W/SiO2 fiber 10-4x10-4 σ/E=20%



 E . B A R R E L E T

16 of 16

Background Rates

0 p/bunch for all detectors,

ot predictive for e_RHIC)

s
eup rejection with < 1% loss

IM A 426 (1999) 518-537

s   (ms) bunch cross number

ta
g
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H1 background rates applied to the Toy model:

- proton induced background around 3.x10-3 for a 5x101

<1.5x10-3 for a single detector

- e+ induced background 10-3 for 2.5x5x1010 e/bunch (n

Performances of Spacal timing calorimeter1:

- timing accuracy: 0.1 ns/√Ε, timing resolution: 30 n
consequences for the toy model --->clean pil

1- The electronics of the H1 lead/scintillating-fibre calorimeters, N

Time between event

H1 1997

OR of 4 near-beam calorimeters: 28khz

(from E.B. et al, LPNHE 2001-10 )

luminosity around 5x1030cm-2 s-1

1s da
takin
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