Toy Model of a Detector for EIC

PLAN:

Revisit our toy model (cf. Whitepaper March 2001) in the context of interaction regions design.

"Strong interaction between detector and accelerator will be needed"

G. Hoffstaetter (Snowmass 2001)

■ 2/4/02 ■

General

Toy model goals:

- 4π acceptance for a complete final state identification
- "spectroscopic resolution" resolution for target remnants and jets

Machine requirements:

- beam divergence and crossing angle
- reasonable luminosity and backgrounds
- "active beam pipes", "active collimators" and "skew vacuum chambers"

Near beam detector requirements:

- rates, background rejection, resolution (spacal, SiO₂-fibers,...)
- special designs? (active beam pipes)

Compatibility of near beam detectors with other goals:

• p-A, A-A, polarization, high luminosity...

Machine Requirements

In-beam spectrometers

Novel feature of the toy model? It comes from the HERA hi-lumi upgrade¹:

^{1.} cf. "Evolution of HERA detectors towards e A physics", E.B., Physics with HERA as eA collider workshop, DESY 25/05/99

Spectrometer design parameters:

- aperture of medium and of high rigidity spectrometers
- length of drift space between spectrometers
- $\int B \, dl$ (fixed by beam optics)
- beam divergence (as low as possible)

Detector Requirements

Hadron-side

-main functions (left to right):

<u>Roman pots (not on plan)</u>: diffractive scattering on beam (or same rigidity ion)

<u>High rigidity spectrometer</u>: EM calo for nuclear $\gamma(\pi^0)$; hadron calo for measuring evaporation neutrons and identificating p⁺& ions; tracking for measuring evaporation p⁺& ions

<u>Medium rigidity spectrometer</u>: EM calo for π^0 s; hadron calo for measuring wounded neutrons and identificating ions&wounded p; tracking for measuring nuclear π^{\pm} , wounded p⁺ and ions

<u>Rapidity gap π -tagger</u>: close the acceptance for charged particles emitted in the DIS process and tags diffractive events

Detector details

High Rigidity Spectrometer question: plastic or SiO₂ fibers?

- Plastic has better energy resolution, is cheaper and easier to build. Spacal type hadronic resolution $(30\%/\sqrt{E})$ is needed for spectator-neutron identification (D beam), but with a more radiation resistant design than former H1 FNC.
- SiO2 is radiation hard and gives highest spatial resolution. Needed for heavy ions (backed by dE/dx measurement?).

• μ -vertex provides small angle tracking

Toy Model:

- active beam pipe for electron tagger backed by Spacal on electron side
- quartz fiber calorimeter for γ tagger (takes up to a few γ per bunch cross)

Arnd E. SPECKA, Ecole Polytechnique, France

specka@poly.in2p3.fr

Properties of new H1 SiO₂ fiber luminometer (thanks to A.Specka for the plots!).

• E_{TOT}

-O E_{TOT,X}

.... E_{TOT,Y}

ENERGY RESPONSE

RECONSTRUCTION

Resolution: 5 mm/ \E[GeV]

-10 -8 -6 -4 -2 0 2 4 6 8 10 x(chamber)-x(fit) [mm]

Granularity: 10 mm

12 GeV: _ σ_x=1.50mm

50 GeV: σ_χ=0.75n

0.1

0.08

0.06

For earlier work on this type of detector see P.Gorodetzky et al NIM A361 (1995) 161-179

vert. strip

Summary of Toy Model Parameters

detectors	type	δαχδβ	precision	char.	granularity
central tracker	ТРС	10^{-3} x 10^{-3}	σ/p=0.5%p	? X0	
µ_vertex	Si	10 ⁻³ x10 ⁻³		.02 X0	15x15µm
Barrel EM	Gas	$10^{-2} \times 10^{-2}$	σ/E=18%/ √ E	X0=1.7cm	3.5x3.5cm
endcap EM	Spacal 2÷1	3.10 ⁻³ x3.10 ⁻³	σ/E=7%/ √ E	X0=.84cm	4x4cm
had calo	Inst.iron		σ/E=90%/ √ E	4.5 λ	20x20cm
spectro track1	DC	$10^{-3} \times 10^{-3}$	σ/p=.02%p	0.2 X0	5x5mm
spectro track2	MWPC(1mm)	$10^{-3} \times 10^{-3}$	σ/p=.05%p	0.2 X0	1x1mm
spectro calo _{EM}	Spacal 4÷1	2.10 ⁻⁴ x2.10 ⁻⁴ a	σ/E=9.5%/ √ E	X0=.7cm	3x3cm
spectro calo _{had}	Spacal 4÷1	4.10 ⁻⁴ x4.10 ⁻⁴	σ/E=30%/ √ E	7λ	3x3cm
e&π-taggers	sci.fiber	$2.10^{-2} \text{x} 10^{-1}$	σ/E=1&5%	.3 X0	0.5x2cm
e-tag calo	Spacal 2÷1		σ/E=7%/ √ E	X0=.84cm	2x300cm
γ-tagger	W/SiO ₂ fiber	$10^{-4} \text{x} 10^{-4}$	σ/E=20%/ √ E	X0=.5cm	2x2 cm

a. overestimated for high rigidity spectro

Background Rates

H1 background rates applied to the Toy model:

- proton induced background around $3.x10^{-3}$ for a $5x10^{10}$ p/bunch for all detectors, <1.5x10-3 for a single detector
- e⁺ induced background 10⁻³ for 2.5x5x10¹⁰ e/bunch (not predictive for e_RHIC) H1 1997 $\begin{bmatrix} \sqrt{7/nd} & 129.0 \\ 0 & 0 & 0 \end{bmatrix} \stackrel{400}{=} \begin{bmatrix} 400 \\ 0 & 0 & 0 \end{bmatrix}$

350 10^{-3} 300 1s data OR of 4 near-beam calorimeters: 28khz 250 taking 10 200 luminosity around $5 \times 10^{30} \text{ cm}^{-2} \text{ s}^{-1}$ 150 10 100 50 0 (from E.B. et al, LPNHE 2001-10) 0 0.1 0.2 0.3 0.5 0 50 0.4

Performances of Spacal timing calorimeter¹:

- timing accuracy: 0.1 ns/ \sqrt{E} , timing resolution: 30 ns consequences for the toy model --->clean pileup rejection with < 1% loss

1- The electronics of the H1 lead/scintillating-fibre calorimeters, NIM A 426 (1999) 518-537

Time between events (ms)

100

bunch cross number

150

200