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/. Summary: The Issues haven’t gone away
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Evidence for Neutrino Instability

F. Reines, H. W. Sobel, and E. Pasierb
Department of Physics, Universily of California at rvine, Irvine, California 92717
(Received 24 April 1980)

This Letter reports indications of neutrino instability obtained from data taken on the
charged- and neutral-current branches of the reaction

+
- n+n+e’ (ccd)
o d<:n +pt 7V, (ncd)
at 11.2 m from a 2000-MW reactor. These results at the (2—3)-standard-deviation level,
based on the departure of the measured ratio (ccd/ned) from the expected value, make
clear the importance of further experimentation to measure the v, spectrum versus
distance.
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Inserting numerical values for the two modes (B
and C) and then combining the results, we find
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where
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®=0.38+0.21 or 0.40+0.22,

which is a (3.0-2,7)-standard-deviation departure
from unity, if it is assumed that the o, calculated
above is representative of a normal distribution,
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1.6.5 The propagation of large errors.

The question nouw arises of what to do in the general case for continuous
variables when the linear approximation for error propagation 1is sus-
pected of being poor. Straightforuard calculation of the distribution
of the new variable R involves complicated integrals over the component
distributions which, even if they are independent Gaussians, quickly
become intractable, and one must resort to numerical calculations even
in relatively simple cases.

One such case came up recently in the analysis of an experiment by
Reines, Sobel, and Pasierb which gives evidence for the instability of

the neutrino. This result is of the greatest importance in high energy
physics since 1t has generally been believed that all neutrinos were
massless and could not decay. In view of the consequences of neutrino

decay, it is necessary to determine the significance of these results
accurately. The final result of the experiment is the measurement of
the ratio of two cross sections, let us call this R. Expressed in terms
of the elementary quantities measured in the experiment, it can be writ-
ten as:

a
R = d k2d
we= (b=} =~ 2 (1 - — ) a
kie ke
where a = 3.84 & 1.33
b = 74 + 4
¢ = 9.5 £ 3
d = 0.112 £ 0.009
e = 0.32 £ 0.002
k = 0.89

Straightforuard application of the linear approximation gives:
R % 0,191 + 0.073

But theoretical calculations show that the neutrino is unstable if R is
less than about 0.42. Therefore, based on approximate error analysis,
the result appears to be very significant: 3.2 standard deviations or
about one chance in a thousand that the neutrino is stable.
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Houwever, two of the elementary quantities have large errors, and tuo
quantities enter into the formula tuice, producing correlations. In
addition, there are several fractions, which e have seen cause non-
Gaussian distributions, so let us try to calculate the exact confidence
intervals for R, The easiest (and perhaps the only) way to do this is
by Monte Carlo. Choose values of a,b,c,d,e randomly according to the
appropriate baussian distributions (ue will be optimistic and assume
that at least the elementary weasurements are Gaussian with known vari-
ances), and plot the resulting values of R. The FORTRAMN program to do
this is so simple that I include it here (Calls to subroutines beginning
with H are for the HBOOK histogramming package; HORRAN is a Gaussian
random number generator; all subroutines called here are from the CERN
Program Library):

PROGRAM REINESCINPUT, OUTPUT)

C CALCULATION OF ERROR ON MEUTRAL TO CHARGED CURRENT
¢ NEUTRINO INTERACTIONS, D/APRES REINES AND ROOS.
c
c SET UP HISTOGRAM OF R
€ALL HBOOK1C(1,10H N OVER 0 , 50 ,0.,0.5,0.)
c

¢ FILL HISTOGRAM BY LOOPING OVER RANDODM SAMPLES OF R
Do 100 1= 1, 10000
CALL NORRAN (XN}
XN = XM¥1.33 + 3.84
CALL NORRAM(XT112)
X112 = X112 % 009 + 0.112
CALL NORRAMN(X74)
X74 = XT74 % 4. + 74,
CALL NORRAN(XY5)
K95 = %95 ¥ 3, + 9.5
CALL NORRAN(X32)

X32 = W32 ¥ 0.02 + 0.32

X89 = 0.89

D1 = X112%(X74-X95) 7(XBI*X32)

D2 = 2.0 ¥ XN ¥ (1.0 - (X8I¥X§12/X32))
XXX = XN/(D1-D2)
CALL HFILL €1,%XXX)

100 CONTINUE

C

C ASK FOR PRINTING OF HISTOGRAM, WITH INTEGRATED CONTENTS
CALL HINTEGC1, 3HYES)
CALL HISTDO

STapP
END




The histogram showing the distribution of the 10000 Monte Carlo values
of R is shoun in Figure 4. Those of you familiar with the reading of
HBOOK output will gquickly find the significant number, namely the number
of entries falling above 0.42, This is almost 4%, so that the true sig-
nificance of the result is only 4% instead of the apparent 0.14. HNotice
also the skew, non-Gaussian distributien of R.
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PHYSICAL REVIEW D

VOLUME 20, NUMBER 11

1 DECEMBER 1979

Precision measurement of the muon momentum in pion decay at rest

M. Daum, G. H. Eaton, R. Frosch, H. Hirschmann, J. McCulloch,* R. C. Minehart,” and E. Steiner
Swiss Institute for Nuclear Research, SIN, 5234 Villigen, Switzerland

We have used the p,+ value of Eq. (7) to calculate
the upper limit for.the muon-neutrino mass. The
muon and pion masses of Ref. 6, » + =105.65946
+0.000 24 MeV/¢c?, m,.=139.5679+0.0015 MeV/c?,
were used. Assuming that m_, is equal to m -
(CPT theorem) one obtains from Eq. (1) the
squared neutrino mass,

m, *=0.13+0.14 (MeV/c?). (8)

The uncertainty of mm2 (one standard deviation)
has been obtained by adding the three contributions
given by Egs. (2)-(4) in quadrature. The contribu-
tions of Am, and Ap,+ to A(m, *) are about equal,
whereas the contribution of Am, is much smaller.

Following the method recommended by the Par-
ticle Data Group,* illustrated in Fig. 22, we cal-
culated the upper limit of the muon-neutrino mass.
The result is

m, < 0.57 MeV/c? (90% confidence level). (9)
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FIG. 22, According to the prescription of the Particle
Data Group (Ref. 33) the upper limit mg of the muon-
neutrino mass is calculated from the squares mass m,
and its uncertainty A(m,,:) by setting the probability
function F(M?) to zero for M2<0, as indicated in the fig-
ure.

2

37, G. Trippe, private communication, 1976,



Estimation of Upper Limits from Experimental Data Report C00-3539-38
Virgil L. Highland

July 1986, Revised February 1987

Temple University

Philadelphia, PA 19122

Upper Limit

Upper limit on mean of
Gaussian based on one
sample, x.

Physical values of 2
mean are non-negative.

Numbers are in units of )
sigma (Gaussian rms). .+~ 1=pure classical
2=truncated classical
. 3=shifted classical
-2 = L 4=Bayesian =
’ 5=Shifted bayesian,
6=McFarlane loss of confidence

1 1 1 | 1
“+ —a —= o) 2 4

Measured X

FIGURE 1
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PDG RPP: 1986, same in 1988 (nothing in 1984)
B.3 Limits in Case of Bounded Physical Regions

If we assume p is bounded from below by p... ... Wwe may estimate an upper
limit for u at the C.L. (e.g., 90%...) by the following procedure:
1) Renormalize the normal probability distribution ...such that the integral of
[Gaussian] from ., to infinity to 1.0.
2) Find the value p, such that the integral... from p;, to p, is equal to the
desired value of CL.
3) Set u, to be the desired upper limit with confidence CL.
...this is conservative...

Ann. Rev. Nucl. Part. Sci. 1988. 38: 185-215 Non—Physical Physical
Region

DIRECT MEASUREMENTS Region
OF NEUTRINO MASS

R. G. H. Robertson

Physics Division, Los Alamos National Laboratory, Los Alamos,

New Mexico 87545 a
D. A. Knapp

P.h)'SI{.S DIVIS]UI‘I, Lawrence Livermore National Labora tory, Livermore, Figure A.2 The prescription recommended by the Particle Data Group for setting con-
California 94550 fidence levels on the true value of a parameter confined to a physical regime. Curve “a”
shows a likelihood function (LF) centered on a measurement, which may fall in the non-
physical regime. Curve “b” is the tail of the LF renormalized to unit area in the physical

: 4 regime. The hatched areas then exclude small and large values of the parameter at a selected
Bob Cousins, Journée Jacques Bouchez, 19 Nov 2010 confidence level.




VOLUME 67, NUMBER 8 PHYSICAL REVIEW LETTERS 19 AUGUST 1991

Limit on v, Mass from Observation of the § Decay of Molecular Tritium

R. G. H. Robertson, T. J. Bowles, G. J. Stephenson, Jr., D. L. Wark, @ and J. F. Wilkerson
Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

D. A. Knapp

Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550
(Received 6 May 1991)

We report the most sensitive direct upper limit set on the mass m, of the electron antineutrino, Our
measurements of the shape of the 8 decay spectrum of free molecular tritium yield, under the assump-
tion of no new physics other than that of mass, a central value for m} of —147 £ 68 41 eV?, which
corresponds to an upper limit of 9.3 eV (95% confidence level) on m2,. The result is in clear disagree-
ment with a reported value of 26(5) eV.

tainties. In order to set confidence limits on the true
value of a quantity that is inherently non-negative, a
Bayesian approach is needed [11]. Adding the uncertain-
ties in quadrature, one finds an upper limit of 9.3 eV on
the neutrino mass at the 95% confidence level. If the

2 2
mv < 96 eV [11] See, R. G. H. Robertson and D. A. Knapp, Annu. Rev.
Nucl. Part. Sci. 38, 185 (1988).
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1995 PDG Review of Particles Properties
ve MASS

2 average In the next section, 1s 5.1

2

1 PDG 94 formal upper limit, as obtained from the m
eV at the 95%CL. Caution is urged in interpreting this result, since the m

positive with only a 3.5% probability. If the weighted average m? were forced to zero,
the limit would increase to 7.0 eV,

average Is

ve MASS SQUARED

VALUE (e\fz) DOCUMENT 1D TECN COMMENT
— 54+ 30 OUR AVERAGE

— 394 344 15 14 WEINHEIMER 93 SPEC 3H 23 decay
— 244+ 484+ 61 15 HOLZSCHUH 928 SPEC 3H 3 decay
— 65+ 85+ 65 16 KAWAKAMI 91 SPEC 7, tritium
—1474+ 63+ 41 17 ROBERTSON 91 SPEC 7, tritium
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Neutrino-less physics

Nuclear Physics B (Proc. Suppl.) 13 (1990) 547-550
Norih-Holland

RECENT RESULTS FROM THE UCSB/LBL DOUBLE BETA DECAY EXPERIMENTS

D.O. CALDWELL,* R.M. EISBERG,* F.S. GOULDING,"' B. MAGNUSSON,* A.R. SMITH,"‘
and M.S. WITHERELL*

Presented by David 0. CALDWELL
Physics Department, University of California, Santa Barbara, CA 93106, USA

40 T T T T T T =y v 7 T LA | T T T T

The data in this energy region are shown in Fig.
1, where a dip is observed at the energy where a peak
is sought. An analysis using Bavesian statistics (an
approach we believe to be most nearly ccrrect) agrees
with a maximum likelihood calculation to 0.1% in
giving from these data a 90% confidence level lower
limit on the halflife of 76Ge (6 — 0% transition) of
1.2 x 10%* years. In this field, 88% confidence levels

FIGURE 1

UCSB/LBL Ge multidetector data in the vicinity of
the possible 0+ — 01 88, peak (arrow) for 21 kg-y
of sensitivity.

Bob Cousins, Journée Jacques Bouchez, 19 Nov 2010
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Phys. Rev. D57 3873 (1998)

Unified approach to the classical statistical analysis of small signals

Gary J. Feldman'
Department of Physics, Harvard University, Cambridge, Massachusetts 02138

Robert D. Cousins’
Department of Physics and Astronomy, University of California, Los Angeles, California 90095

“Test for 6=0," &
“Is B, In confidence interval for 0”

Using the likelihood ratio hypothesis
test, this correspondence is the basis
of intervals/regions F-C advocated.
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Kendall and Stuart

CHAPTER 22
LIKELTHOOD RATIO TESTS AND TEST EFFICIENCY

The LR statistic
221  The ML method discussed in Chapter |8 is aconstructive method of obtaining estimators
which, under certain conditions, have desirable properties. A method of test construction closely
allied to it is the likelihood ratio (LR) method, proposed by Neyman and Pearson (1928). It has
played a role in the theory of tests analogous to that of the ML method in the theory of estimation.
As before, we have the LF
n
Lexi8) = [ o),
i=1
where 8 = (8., 8,) is a vector of ¥ + 5 = k parameters (¢ = |, 5 > 0) and x may also be a vector.
We wish to test the hypothesis
Ho: 8, =8, (22.1)

which is composite unless s = 0, against
Hy o8, # 6.

We know that there is generally no UMP test in this situation, but that there may be a UMPU test
—-«¢f 21,31
The LR methad first requires us to find the ML estimators of (8., #,), giving the unconditional
maximum of the LF
Lix|8)g.6,). (222

and also 1o find the ML estimators of 8, when Hp holds,' giving the conditional maximum of
the LF .
Lix100.8,). (22.3)

b, in (22.3) has been given a double circunflex to emphasize that it does not in general coincide
with @, in (22.2). Now consider the likelihood ratio?

Lixi8,0, 0,
§ = Lxifro.9,) (22.4)
L(x|8,.0,)

Since (22.4) 1s the ratio of a conditional maximum of the LF to its unconditional maximum, we
clearly have

O=l=1L (22.5)

Intuitively, I is a reasonable test statistic for Hy: it is the maximum likelihood under Hy as a
fraction of its largest possible value, and large values of { signify that Hy is reasonably acceptable.
The critical region for the test statistic is therefore

I 2 ¢, (22.6)

where ¢ is determined lrom the distribumtion g{/) of ! 1o give a size-c (est, that is,
f gihdl = e 1221
1]

Nerther maximum value of the LF is affected by a change of parameter from @ o 7(#), the ML
estimator of T(#) heing () — cf. 18.3. Thus the LR statistic is invariant under reparametrization.
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Confidence belts on bounded parameters

J.Bouchez
DAPNIA /SPP

CEA-Saclay
91191 Gif-sur-Yvette Cedex, France

January 13, 2000

Abstract

We show that the unified method recently proposed by Feldman
and Cousins to put confidence intervals on bounded parameters can-
not avoid the possibility of getting null results. A modified bayesian
approach is also proposed (although not advocated) which ensures no
null results and proper coverage.

http://arxiv.org/abs/hep-ex/0001036

Gary and | felt there was a misunderstanding,
led to important clarification in PDG.

Bob Cousins, Journée Jacques Bouchez, 19 Nov 2010
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Statistica Sinica 19 (2009), 301-314

ON THE UNIFIED METHOD WITH
NUISANCE PARAMETERS

Bodhisattva Sen, Matthew Walker and Michael Woodroofe

The University of Michigan

w
T

0/s

-6 0 2 4

LTI

Figure 2.1. Confidence limits for #/s as a function of y/s when r = 10 and
« = 0.1. Observe that the upper limit starts to increase as y decreases for
y < 0.

[Recall McFarlane “Loss of Confidence”]
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Contributed to 18th International Conference on Neutrino Physics and
Astrophysics (NEUTRINO 98), Takayama, Japan, 4-9 Jun 1998.

Nuclear Physics B (Proc, Suppl.) 77 (1999) 212-219

The Search for Neutrino Oscillations 7,— 7, with KARMEN
K. Eitel® and B. Zeitnitz* for the KARMEN collaboration|[1]

s A FTKARMEN2 T
In the investigated data, no sequential struc- = si‘;iﬁlﬁ‘;r% : r
ture fulfilled all the required properties for a g :
(et,n) sequence. After all cuts, the remaining 10 b .........

background amounts to only 2.88 & 0.13 events
caused by sequential cosmic background and v in-
duced sequences. These background sources are _; - ;
described in detail in the following section. The Lo proe NG T
probability of measuring zero events with an ex- - KARMEN2

pected number of 2.88 £ 0.13 background events Feb.97-Apt.98 |

is 5.6%. Applying a unified approach [8], we de- y 0% CL c’_“’h""‘o"

duce an upper limit of N < 1.07 (90% CL) for a
potential 7, — U, oscillation signal. With an ex-
pectation of N = 811 + 89 for sin®(20) = 1 and
large Am? this corresponds to a limit of

l

. -3 , o . o ,
* - . 1
sin (2@) < 1.3 10 (90% CL) (2) Figure 3. KARMEN2 90% CL exclusion limit and sensitivity compared to other experiments: BNL [9
CCFR [10], BUGEY [11] and the evidence for 7, — &, oscillations reported by LSND [12].

for Am? > 100eV?/c*. Fig 3 shows the KAR-
MEN2 exclusion curve iIl CompariSOH With Other 8. @.J. Feldman and R.D. CouSinS Phys Rev.
experiments. D 57, 3873 (1998).
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Quick reminder of intervals on Poisson mean

Adapted from R. Cousins, Am. J. Phys. 63 398 (1995)

Poisson process P(n|y) = u”e'“/n!
Measurement of n yields n=3.

Substituting n=3 into P(n|p) yields the
Likelihood function L(p).

[ B B B B
It is tempting to consider area ., L(p) =pdeHy3r
under L, but L(n) is not a a ]

probability density in p:

0.12 -

Area under L is meaningless.

0.08 -

0.04 — i
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How to get upper (or lower) limit on p ?
Consider 90% upper and 90% lower limits on .
Together they form an 80% central interval for p.

1) Frequentist confidence limit method:
Find p, s.t. Poisson P(n<3 | u,) =0.1. p, =6.68
Find p,s.t. Poisson P(n=>3 | w,) =0.1. p,=1.10

T | T T T T T T T T : 0_4 _— T T | T T T T | T T | T T —]
0.15 [ = 0.35 -
0.125 [ P(n | 1) - 0.3 |
0.1 — ] N
- 2 : w=1.10
- 10% ] 0.2 B
0.075 A~ e -
- ] 0.15 |
0.05 [~ - - 10%
- ] 0.1 2 Vo VA
0 - I | I | . 0 B I P R R R R B
0 3 6 9 12 15 0 3 6 9 12 15
n

n
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2) Likelihood ratio method.
Based on L(w) /L(w, ), equivalently:

—2InL(w) — (-2InL(y,, ) £ Z?, for Zreal.

Asymptotically (note regularity conditions) this interval
approaches a frequentist central confidence interval with
C.L. corresponding to + Z Gaussian standard deviations.

o
TT

L =210 L(ne=3 I 1)
80% C.L.

4 90% upper and lower limits are:
1 pn, =5.80

;\\/IA=1,64 _é u£:129

1 | 1 1 | 1 1 | 1 1 | 1 1
3 6 9

o = N WU + OO O N O ©
TTTT TTTT]TTT TTTT[TTTTTTTT TTTT

o
N
n

Bob Cousins, Journée Jacques Bouchez, 19 Nov 2010

For 80% central interval, Z=1.28.
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3) Bayesian method.
Different definition of probability: degree of belief.
With that definition, one can have pdf's in p (!)
p(u[n=3) oc L(u) p(w),
p(u|n=3) = posterior pdf for u, given n=3
L(un) = Likelihood function from above for n=3
p(w) = prior pdf for u, before incorporating n=3.

Vast literature on Bayesian methods and priors.
This literature has largely been ignored in HEP,
where most papers use uniform prior for p.

Bayesian statisticians call this “pseudo-Bayesian”.

Bob Cousins, Journée Jacques Bouchez, 19 Nov 2010
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Bob C

Deep Foundational Issue: Confidence Principle
(Frequentist Coverage) vs Likelihood Principle

The Likelihood ratio interval and the Bayesian
interval use L(u) given the observed n=3, but

make no use of P(n|n) for any n#3. This is the
essence of the Likelihood Principle.

The confidence interval relying on P(n<3 | u) and

P(n>3 | u) used probabilities of data not observed.

This violates the L.P.

This turns out to be very important:
In general, cannot have both coverage and L.P.
Whole approach of tail probabilities violates L.P. !

Cousins, Journée Jacques Bouchez, 19 Nov 2010
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The Karmen Problem is a Classic L.P. Issuel!

The “Karmen Problem”

— You expect background events sampled from a Poisson
mean b=2.8, assumed known precisely.

— For signal mean p, the total number of events n is then
sampled from Poisson mean p+b.

— S0 P(n) = (ut+tb)" exp(-p-b)/n!
— Observe n=0.

— L(p) = (utb)° exp(-p-b)/0! = exp(-p) exp(-b)

Changing b from 0 to 2.8 changes L(u) only by the constant
factor exp(-b). This gets renormalized away in any Bayesian
calculation, and is irrelevant for likelihood ratios.

So for observed n=0, likelihood-based inference about signal
mean p is independent of expected b.

For essentially all frequentist confidence interval
constructions, the fact that n=0 is less likely for b=2.8 than
for b=0 results in narrower confidence intervals forpas b
Increases. Clear violation of the L.P.

Bob Cousins, Journée Jacques Bouchez, 19 Nov 2010
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Likelihood Principle Discussion

We will not resolve this issue, but should
be aware of It.

« See book by Berger & Wolpert, but be
prepared for the “Stopping Rule
Principle” to set your head spinning.

 When frequentist intervals and limits
badly violate the L.P., use great caution
In interpreting them!

« And when Bayesian inferences badly
violate the Confidence Principle
(frequentist coverage), again use great
caution!

Bob Cousins, Journée Jacques Bouchez, 19 Nov 2010

Institute of Mathematical Statistics

LECTURE NOTES-MONOGRAPH SERIES
Shanti S. Gupta, Series Editor

Volume 6

The Likelihood Principle

(Second Edition)

James O. Berger
Purdue University

Robert L. Wolpert

Duke University
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“Lucky” Data: Events with high power

Physics Letters B 292 (1992) 221-228

A measurement of the tau mass
ARGUS Collaboration

N
30 MeV/c?

0 1 1 iI ' 1] s nite W
10 1.1 12 13 14 15 16 17 18 19

m, [GeV/c?]

Fig. 6. Measured invariant 57 mass spectrum (histogram ),
where the hatched part displays the result of our previous
analysis (see text). The curve corresponds to the expected
shape of a phase-space decay weighted with the weak matrix
element (assuming m,, = 0 MeV/c?). Note that the curve
has not been normalized to the data.

Bob Cousins, Journée Jacques Bouchez, 19 Nov 2010

1987 limit with 12 events was
so “lucky” that 1992 limit with
20 events was the same.

(Event through in both cases,
highest 5T mass was removed
in order to account for
possible uncertainties in
background.)

m, * <35 MeV?

(<31 MeV 2 with new T mass)

24



VOLUME 70, NUMBER 24 PHYSICAL REVIEW LETTERS 14 JUNE 1993

Limit on the Tau Neutrino Mass

(CLEO Collaboration)

To compare these results to the ARGUS result it is in-
formative to calculate the quantity Ppc, defined as the
percentage of signal Monte Carlo experiments in which a
95% C.L. limit less than or equal to that of the data is ob-
tained. Since each of these experiments is generated at

Bob Cousins, Journée Jacques Bouchez, 19 Nov 2010

TABLE I. The size of the final event samples, the 95% C.L.
limit on M, _after correction for systematic efforts, MJ?, and
the estimated Monte Carlo probability of having obtained this
limit, Pmc, for each of the studied decay modes and for the
published ARGUS result. The errors on Pmc are statistical
only.

Decay Sample M)? Pwmc
mode size (MeV) (%)
t > 3hT2h Yy, 60 47.5 3491408
7 2h "h* 20, 53 33.7 4.3+0.3
Combined 113 32.6 139+ 0.6
ARGUS 20 31 0.041 £0.012
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Conditioning

e “Ancillary statistic”: a function of your data which carries
Information about the precision of your measurement, but no
Info about parameter’s value.

« E.g.: branching ratio measurement in which the total number
of events N can fluctuate if the experimental design is to run
for a fixed length of time.

Then N is an ancillary statistic.

 You perform an experiment and obtain N total events, and
then do a toy M.C. of repetitions of the experiment. Do you
let N fluctuate, or do you fix it to the value observed?

* |t may seem that the toy M.C. should include your complete
procedure, including fluctuations in N.

 But there are strong arguments, going back to Fisher, that
Inference should be based on probabilities conditional on
the value of the ancillary statistic actually obtained!
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Conditioning (cont.)

o 1958 thought experiment of David R. Cox focused the issue:

— Your procedure for weighing an object consists of
flipping a coin to decide whether to use a weighing
machine with a 10% error or one with a 1% error; and then
measuring the weight. (Coin flip result is ancillary stat.)

— Then “surely” the error you quote for your measurement
should reflect which weighing machine you actually used,
and not the average error of the “whole space” of all
measurements!

— But classical most powerful Neyman-Pearson hypothesis
test uses the whole space!

 In more complicated situations, ancillary statistics do not
exist, and it is not at all clear how to restrict the “whole
space” to the relevant part for frequentist coverage.
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Conclusion

Some of the statistics controversies in
neutrino physics are “classic” cases of
foundational issues in the professional
statistics literature...

Procedures pioneered by neutrino
physicists have had large impact on the
greater HEP community...

...and problematic data sets still arise:

Bob Cousins, Journée Jacques Bouchez, 19 Nov 2010

28



Search for Quark Compositeness with the Dijet Centrality
Ratio in pp Collisions at /s = 7 TeV

From Abstract:

confidence level.

The CMS Collaboration*

A statistical analysis of the data provides a lower limit on the
energy scale of quark contact interactions. The sensitivity of the analysis is such that
the expected limit is 2.9 TeV; because the observed value of the centrality ratio at
high invariant mass is below the expectation, the observed limit is 4.0 TeV at the 95%

\s=7TeV
2.9 pb™

Limit: A > 4.0 TeV

— Data

——95%CL,

i _isM=z20c -

L
2000

1 | |
3000

4000

5000
A (GeV)

arXiv:1010.4439

Figure 3: Summary of the limit for the contact interaction scale A. We show R versus A for
the data (solid line), the 95% CL; (dashed line), and the SM expectation (dotted line) with 1

(dark) and 2¢ (light) bands.
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Summary of Three Ways to Make Intervals

P(parameter|data)?

Bayesian Frequentist Likelihood
Credible Confidence Ratio
Requires prior pdf? Yes No No
Obeys likelihood Yes (exception No Yes
principle? re Jeffreys prior)
Random variable in | u, My, Uy My, Uy
Pl € [, 151)":
Coverage No Yes (but over- | No
guaranteed? coverage...)
Provides Yes No No

Bob Cousins, Journée Jacques Bouchez, 19 Nov 2010
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P, Conditional P, and Derivation of Bayes’ Theorem

In Pictures

Whole space

¢
‘B P(A|B) = D P(B|A) =

¢
PANB)= i

g g

P(A) x P(BJA) = ‘x T P(A N B)
@ 9

P(B) x P(A|B) = X = —— = P(ANB)
Il e B

Bob Cousins, Journée Jacques Bouchez, 19 Nov 2010 = P(B |A) — P(Al B) X P(B) / P(A)

@D
P(A) = —— P(B) = ——
] ]
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2010 RPP

7 MASS (electron based)

o 2(eff) _ 2
Those limits given below are for the square root of m, =3 |U€?-|
m2 . Limits that come from the kinematics of 3H.,8_17 decay are the

i’/,‘

2(eff)

square roots of the limits for m, . Obtained from the measurements

e
reported in the Listings for "7 Mass Squared,” below.

VALUE (eV) CL% DOCUMENT ID TECN COMMENT
< 2 OUR EVALUATION

< 23 95 1 KRAUS 05 SPEC 3H 3 decay
< 25 95 2LOBASHEV 99 SPEC 3H 3 decay

7 MASS SQUARED (electron based)

Given troubling systematics which result in improbably negative estima-

2(eff)

tors of m
v

KRAUS 05 and LOBASHEV 99 for our average.

= > ‘Uei{2 m}%_, in many experiments, we use only

VALUE (eV2) CL% DOCUMENT ID TECN COMMENT
1.1+ 2.4 OUR AVERAGE
06+ 22+ 21 15 KRAUS 05 SPEC 3H 3 decay
1.94+ 3.4+ 22 16 LOBASHEV 99 SPEC 3H 3 decay

Bob Cousins, Journée Jacques Bouchez, 19 Nov 2010
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Tau Neutrino Mass

9 July 1998

PHYSICS LETTERS B

ELSEVIER Physics Letters B 431 (1998) 209-218

A limit on the mass of the v

CLEO Collaboration
The resulting extended likelihood is shown in Fig. 4. We define ® the 95% confidence level (CL) upper limit
by integrating defined likelithood above zero mass to its ninety-fitth percentile. We find 95% CL upper limits of

The method for extracting an upper limit from a likelihood distribution at a given confidence level is not unambiguously defined: the
method used here differs from that used in the analysis of Ref. [8]. Therefore comparisons of upper limits among different experiments must
be done with care.
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20. STATISTICS

Revised June 1994 with the help of R. Cousins, F. James, G. Lynch,

B. P. Roe, and M. Roos.

Physical quantity o

Figure 20.5: The situation near a physical boundary. In
Fig. 20.1 the horizontal line for a given ceyp, crossed the domain
D(e), bounded by =1 (e, ¢) and ~9(a, ¢) entirely in the physical
region, entering at ¢; and leaving at ¢5. The limits v and 4
cannot be defined In a region where o 1s not defined, so the
functions cannot be continued into the unphysical region. As a
result ¢y (for experiment A) or ¢; and eq (for experiment B)
cannot be delined. Options 1, 2, and 3 label the ways one might
deline conlidence intervals, as described n the text.

Bob Cousins, Journée Jacques Bouchez, 19 Nov 2010

: 2. The Bayesian approach [3]. This is the approach lavored in the
SR P I . older literature, and has (unfortunately and incorrectly) been referred
= | Option 3 Y, (0L€) o as the “PDG method” in cortain pavers. To beein swith. it is areued
§ Unphysical .. : Option 2 o as the =+ method” in certain papers. To begin with, it is argued
Z | resionfora || 10ption 1
> ]
i SRR I
g | D(e) ¥ (0LE) Unphysical | Physical
2 Yo region region
= 1 _—
= 1 i | q .
T ez Olexp A =smdmdee e e ] gla /o) (before
g V 1C5 ) A0S
x ! & normalization)
~ | Unphysical
) \ 1 .
= " values for o f(o/o) L € of area
5 SR . in physical
1! region

A Gactual &

I

| ¢

0. Or O
Confidence limit 1 —¢

Figure 20.6: An example of a bounded physical region, in
which a measurement & can f[all in an unphysical region with

significant probability. If we assume that «, the quantity we

are tryving to measure, cannot lie in the unphysical region (0

probability) but can lie anywhere in the physical region (“no

prior knowledge”),

then Bayes’ theorem says that our new

knowledge of the distribution of o, given our measurement &, is

given by the shaded lunction alter appropriate renormalization.
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