Long Baseline Oscillations: Towards Japan

Maximilien Fechner (CEA Saclay Irfu/SPP)

M. Fechner, Journée Jacques Bouchez, Nov 2010

Why join the US/Japan collaborations of K2K & T2K

- Unique expertise in giant water Cherenkov detectors
- The aim was to "learn" and then possibly apply the knowledge in a future generation of experiments
- EU collaborators joined K2K in late 2002, after SK was rebuilt following its accident in Nov 2001
- T2K started with EU input from the beginning

Three flavor neutrino oscillations

- Goal of K2K : confirm Super-K's 1998 result by observing v_{μ} disappearance
- Goal of T2K : find evidence of small $v_{\mu} \rightarrow v_{e}$ flavor change driven by θ_{13}

The "X"2K experiments

- Produce a neutrino beam (v_{μ}) at a proton accelerator in Japan
- Use Super-Kamiokande as the far detector
- Install a cluster of detectors near the beam's production point in order to control the beam normalization & spectrum "before oscillations"
- Can also be used for measurement of v-nucleus cross-sections

Super-Kamiokande

- Water Cherenkov detector
- ~11,140 PMT (20") facing inwards
- 1,885 PMT (8") facing outwards in 2-m thick veto
- 50,000 tons of ultra pure water
- 32,000 tons in inner volume
- 22,500 tons in fiducial volume

14 years since SK's first data

M. Fechner, Journée Jacques Bouchez, Nov 2010

SK: Cherenkov ring imaging technique

Each track produces a ring on the detector's inner wall. Each PMT records an integrated charge (0-200 pe's) and the impact time of the first photon hit.

Event reconstruction is complex and iterative:

- Fit the event's vertex
- Count the number of rings & apportion charge between them
- Identify each ring's type: e-like (shower) or mu-like (muon)
- Find particles' energies
- e/π^0 separation

electron/muon separation

400 MeV electron

500 MeV muon

EM shower \rightarrow "fuzzy ring", edge not well defined

No shower : sharp edges

mis-identification rate below 1.5%

Neutrino detection at Super-K

The golden events are charged-current quasi elastic (CCQE) $v_1 + n \rightarrow l + p$

$$E_{v} = \frac{m_{p}^{2}/2 - m_{n}^{2}/2 - m_{l}^{2}/2 + m_{n}E_{l}}{m_{n} - E_{l} + p_{l}\cos\theta}$$

• High Cherenkov threshold in water of $p/\pi/K...$

Contamination with non CCQE events with biased reconstructed energy

Fermi motion & other nuclear effects

 Need to measure backgrounds at near detectors with other detection technique & lower thresholds

 Avoid v-nucleus cross-section systematics
 use water as a target material at the near site as well

Backgrounds for v_{P} detection in SK

Signal : Single-ring, e-like events from CC v_{a} interactions

Can reconstruct the energy

Backgrounds in single-ring, e-like sample

- Mis-identified v_{μ} events: very weak
- \bullet Beam ν_{a} events: irreducible background
- Neutral current π^0 events ($\nu + X \rightarrow \nu + \pi^0 + Y$)
 - Overlapping γ rings
 - Asymmetric disintegration with very weak γ

The K2K experiment

Beam power 15 kW

• About 1 v event every 2 days at SK

References: Phys. Rev. D 74, 072003 (2006) T. Nakaya's talk at Neutrino 2004

K2K data taking

The K2K beam

- Finite size of decay volume
- Close proximity of ND to decay volume (300m)
 - The spectra at 300 m and SK are different
 - Flux ratio Near/Far not just 1/L²

Nead simulation & measurements to obtain energy dependent Far/Near ratio

$$R^{F/N} = \frac{\Phi^{\rm SK}(E_{\nu})}{\Phi^{\rm ND}(E_{\nu})}$$

Far/Near ratio calculation

- Rely on beam Monte-Carlo to provide F/N ratio
- Need accurate modeling of hadron production at target
 - MC simulations known to have potentially large errors
- Monte-Carlo tuned & constrained thanks to
 - PIMON measurement: direct *in-situ* measurements of pions after target with dedicated Cherenkov detector called PIMON
 - HARP data: HARP (CERN PS T9 beamline) measured pion production with 12.9 GeV/c proton beam on identical AI target

- Dominant undertainty from HARP data
- Uncertainties vary from ~2%-9% per bin

Detectors at the near site

- 1000 ton water Cherenkov detector
- Scintillating Fiber/ Water sandwich detector (SciFi)
- Lead Glass calorimeter (before 2002)
- Extruded scintillator bars fine grained detector (SciBar) after 2003
- Muon range detector (MRD)

Example of QE/non QE separation in SciBar

Fully active detector

 Can detect the proton track & fully tag CCQE events based on proton direction

Oscillation analysis method

Flux measurement with near detectors

- **1KT detector** : same technology as Super-K, sensitive to low energy neutrinos
 - Select events with 1 mu-like , fully contained track
- SciBar detector:
 - I track, 2 track QE events, 2 track non QE with one muon track
- SciFi detector:
 - I track, 2 track QE events, 2 track non QE with one muon track
- Combined fit of (P_{μ}, θ_{μ}) distributions, adjusting 8 flux MC reweighting parameters and the non-QE/QE fraction

Combined Pµ after flux fit

K2K results on v_{μ} disappearance

- Select mu-like events in SK's fiducial volume, in time with beam
 - Observe 112 events
 - 58 of those are 1 ring and used for energy spectrum reconstruction
- Extrapolating from 1KT detector, $158.1_{-8.6}^{+9.2}$ events were expected if no osc.
- Full fit to observed spectrum shape + norm : $(\Delta m_{23}^2, \sin^2 2\theta_{23}) = (2.55 \ 10^{-3} \ eV^2, 1.19)$

K2K v_e appearance results

- Using full data set
- \bullet Search for ν_{a} appearance: Single ring, e-like events in SK
- Backgrounds:
 - beam v_{r} events from v_{r} contamination
 - π^0 production by neutral current events with π^0 faking single ring e-like event
 - These are the main backgrounds in T2K
 - Special e/π^0 separation algorithm used for the first time in SK data
- In K2K systematics were very large (>15%)
- I event observed in SK
- 0.8 expected background events
- Not competitive with Chooz bound
- Jacques was J. Argyriades's thesis supervisor on this particular topic

Results on CC coherent pion production

 $\nu + A \rightarrow \mu^{-} + \pi^{+} + A$

Phys. Rev. Lett. 95, 252301 (2005)

• K2K observed no evidence of this interaction mode in SciBar data • σ (CC coherent π) / σ (v_{μ} CC) < 0.6 10⁻²

SciBoone also does not see it (using the same detector)

T2K

T. Kobayashi's talk at Nu 2010 T. Nakaya's talk at ICHEP 2010 F. Blaszczyk talk at ICHEP 2010

Off-axis beam

- Off-axis trick: use 2-body decay kinematics of pion decay
 - Narrow spectrum
 - \bullet No high energy tail to reduce backgrounds, lower relative $v_{\rm g}$ contamination
- Off-axis angle set to 2.5 degrees
 - Spectrum peak at ~ 600 MeV, exactly at the first maximum of the oscillation
- Very precise measurement of atmospheric osc. parameters
- Search for v_{a} appearance in beam caused by θ_{13}

T2K beam spectra

- v_{μ} fluxes different at ND280 & SK
 - Need precise beam MC, along with hadron production measurements (NA61)
- v_{p} fluxes fairly similar at ND280 & SK
 - Need ND280 to measure contamination at SK (irreducible background)

Beam power & data taking so far

- 3.28 10¹⁹ protons on target for physics (as of June 2010)
- Continuous run at 50 kW
- Succesful trial run at 100 kW
- Upgrade during Summer-Fall 2010

On-axis near detector INGRID

Scintillator tracker & iron sandwich On axis: control the beam's "aim" Beam centered to < 1mrad, well within requirements Veto Counter event rate after neutrino event selection χ^2 / ndf 8m 61.26 / 57 # of events/1e14 protons@CT05 1.517 ± 0.003 00 beam center 0.5 8m integrated day profile X center profile Y center profile center x[cm] Nov. 22, 2009 F profile center y[cm] 40 40 20:25:48.JST Side view 1mrad Imrad 20 20 v bean 0 on-axis on-axis -20 -20 1mrad..... 1mrad -40 -40 Jan. and Feb. Mar. Apr. May.(~20th) May.(20th~) Jan. and Feb. Mar. Apr. May.(~20th) May.(20th~) 2010

2010

Off-axis near detector

- 2.5 deg off-axis, 280 m from target
- \bullet Goal: measure flux, $\nu_{\rm p}$ fraction, beam direction,
- ν interaction cross-sections
- POD : π⁰ detector, measure NC production
 lead+scintillator bars.
 - Interspersed with water passive target
- Tracker:
 - FGD: fine grained detector
 - Plastic scintillator bars in x-y planes
 - Passive water target in back FGD
 - TPC: three TPC modules
 - Bulk Micromegas detector planes
 - Readout based on AFTER ASIC
 - Particle identification based on dE/dX
 - Momentum resolution <10% at 1 GeV</p>
 - EM calorimeter (ECAL)
 - Side Muon rande Detector (SMRD)
- UA1 magnet: 0.2T magnetic field

ND280 results

- All detectors commissioned & taking data
- Barrel ECAL installed last summer

FGD hit efficiency per layer >99%

Event selection at SK

- Select neutrino beam candidates with GPS timing
- SK has been under study for 14 years
 - Data selection cuts are already decided
 - Unbiased analysis
 - 22 fully contained beam events as of May 2010

For v_{μ} disappearance analysis	For v _e appearance search
Timing coincidence w/ beam timing (+TOF)	
Fully contained (No OD activity)	
Vertex in fiducial volume (Vertex >2m from wall)	
Evis > 30MeV	Evis > 100 MeV
# of ring =1	
µ-like ring	e-like ring
	No decay electron
	Inv. mass w/ forced-found 2 nd ring < 105MeV
	$E_{\nu}^{rec} < 1250 MeV$
Main backgrounds: π^0 production &	

beam v_{r} contamination

Event displays

2 ring event

Extrapolation from ND280 to SK

- Strategy similar to that of K2K
- Measure v_{μ} flux and v_{e} contamination at ND280
- Use results in beam Monte-Carlo to extrapolate the flux at SK from ND280
 - Need NA61-SHINE hadron production data to calculate "Far/Near ratio"
 - Pilot run in 2007, high statistics in 2009
 - 30 GeV protons, thin target & T2K replica target
 - Analysis in progress...

Expected sensitivity

Conclusion

- K2K was the first long-baseline experiment
 - Confirmed SK's observation of atmospheric oscillations
 - As expected, no competitive result on θ_{13}
 - Excellent learning experience for next generation experiment
- T2K is now fully constructed, commissioned & taking data
 - Beam power ~ 50 kW with trials at 100 kW
 - Now increasing from 100 kW to design power
 - Aim to accumulate 0.75 MW x 5 10^7 s = 3.75 10^7 MW s
 - v_{p} appearance search:
 - $sin^2 2\theta_{_{13}}$ down to 0.018 (3 σ discovery potential), 0.008 (90% CL sensitivity) at fixed $\delta_{_{CP}}$
 - $v_{\mu}^{}$ disappearance :
 - 10⁻⁴ eV² precision on Δm^2 and 0.01 precision on sin²2 θ_{23}