

DESI Spectrograph: in-situ Calibration System

Julien Guy (IN2P3/LPNHE) Sonia Karkar (IN2P3/LPNHE) Laurent Le Guillou (UPMC/LPNHE)

> DESI France Workshop Paris/Saclay, Nov. 17th-18th, 2016

Talk outline

- Overview
- Calibration System Requirements
- Calibration light sources
 - Spectral lamps
 - Continuum lamps
- Lambertian diffusion screen
- Current status and planning

Telescope and Dome dimensions

Rationale

- **Spectral lamps** to get the wavelength solution (CCD pixels to wavelength)
 - \rightarrow required : enough well separated atomic lines
- Continuum lamps for flats (fiber to fiber uniformity)

→ required : a « flat » enough spectrum on the whole spectro range (350 - 1000 nm)

• Spatial uniformity / pupil uniformity :

- \rightarrow 4 identical boxes on the upper ring
- \rightarrow A quasi perfectly lambertian diffusion screen

Calibration System Requirements (DESI-1067)

Req't Name	Requirement	Rationale	Verification method
Bandpass	360-980 nm	Required for z range of Ly- alpha QSOs and ELGs (DESI-0318)	Laboratory tests: measure lines lamps spectrum
Pupil Uniformity	20% (azimuthally averaged)	PSF stability of 3% req. IN.FBR-5013, (DESI-0581 v8)	Measured lamp luminance plus analysis
Field Uniformity	5% (relative to the telescope field response to a constant sky intensity)	ELG redshift efficiency and catastrophic failure rate unchanged	Measured lamp luminance plus analysis
Spectral Line Coverage	Wavelength calibration precision better than 0.15 pixel or 0.08 A (this requires "approximately" a max. bright line separation of 40 nm)	Required for accurate spectral extraction. (DESI-318)	Laboratory tests: measure lines lamps spectrum
Continuum flatness	Maximal spectral variation of a factor 10 (max/min) in counts	Calibration images above noise and below non-linear regime & brighter-fatter effect	Laboratory tests: measure continuum lamps spectrum

DESI Blue, Red and NIR arms bandpass

Pupil illumination uniformity (max 20%)

Pupil uniformity change of 20%

 \rightarrow max change of spectro PSF FWHM < 0.2% $\forall \lambda$

2

1

Meets requirement on PSF stability of 3% (requirement IN FBR-5013, see DESI-0581 (v8)) **Output Intensity** Input Intensity 1 Max diff < 0.2% 0.9 0.9 0.8 0.8 -Uniform -Uniform Input 20% 0.7 0.7 -20% Ramp Up Output Intensity 0.5 0.4 Down Ramp Input Intensity 0.5 non-uniformity 20% Ramp Down Up Ramp 0.3 0.3 0.2

0.2

0.1

8

7

0

0

benchmark input azimuthally average pupil intensity

Angle (degrees)

5

3

2

Angle (degrees) pupil intensity at the fiber output (with a measured the fiber FDR)

5

7

8

6

0.1

0

Field illumination uniformity (max 5%)

Field inhomogeneities \rightarrow error on the fiber flat-fielding (calib. with continuum lamps)

 \rightarrow sky background residuals in the target spectra

 \rightarrow Science criteria : ELG redshift efficiency and catastrophic failure rate

The simulated ELG sample of the first redshift data challenge were fit with the zztop redshift fitter, with a fiber flat field error emulated by adding a fraction of the sky spectrum in the ELG spectra

Four Source boxes

Laurent Le Guillou (UPMC/LPNHE) DESI France Workshop – Paris/Saclay, Nov 17th-18th, 2016 11 / 21

Four Sources Boxes should be enough

- First study by P. Jelinsky, using ray tracing ✓
 - Define need for 4 sets of lamps
 - Careful analysis of fiber to fiber uniformity
- New code (J. Guy), purely geometrical, interfaced with DESI model
 - Reproduce previous results
 - Investigate effect of intensity variation of lamps On going

Laurent Le Guillou (UPMC/LPNHE) DESI France Workshop – Paris/Saclay, Nov 17th-18th, 2016 12 / 21

Spectral sources (arcs): spectral lines coverage

Impact the wavelength solution:

- Rough estimate with MC gives 40 nm max. spacing
- Example with third pipeline data challenge (DC3) of DESI and SDSS/BOSS lines

Lack of lines coverage affects the precision of the wavelength solution

 \rightarrow combination of 3 - 5 lamps to get enough well separated lines: Hg, Cd, Ar, Ne, Kr, Xe, Zn...

Laurent Le Guillou (UPMC/LPNHE) DESI France Workshop – Paris/Saclay, Nov 17th-18th, 2016 13 / 21

Spectral sources candidates

• Spectrum data from manufacturers / NIST atomic lines

Spectral sources candidates

- Several manufacturers (UVP, Oriel, Philips, Osram, ...)
- But :
 - Huge differences between lamps of containing the same atomic elements
 - Unreliable lines relative intensities
 - No photometric information (except for some dangerous UV lines)

On-going tests (and analysis) for several models (UVP, Philips, Osram...) : spectra and photometric measurements (at LPNHE)

Example: Neon lamp (UVP PenRay)

Continuum lamps: spectral flatness

- Requested : clean calibration signal above noise
 - \rightarrow Min number of electron per pixel row : 10 000 e^-
- Avoid high intensity **non-linear effects**
 - \rightarrow Max number of electron per pixel row : 168 000 e^-
- Ratio of DESI throughput across full spectral range = 5
 - → Max ratio of counts across the spectrograph complete spectral range = 3 very constraining
 → Becomes factor of 10 if use several exposures with different exposure time for each band

Continuum lamps

current continuum lamps (halogen) available at the Mayall "low flux" lamps have a blue filter to balance their spectrum.

- Coverage problems and flux instability with the existing continuum lamps
- **Discussion on a additional set of powerful LED** (with P. Martini)

The existing screen is too small

Lambertian Screen upgrade

« Permaflect » coating :

→ Lambertian reflectivity

Replacing all panels for better uniformity

Permaflect - 94 BRDF at 20° Incident Beam

Laurent Le Guillou (UPMC/LPNHE) DESI France Workshop – Paris/Saclay, Nov 17th-18th, 2016 20 / 21

- Final selection of lamps based on lab tests (end 2016)
- Order screen parts (mid-2017), mounting screen (end 2017)
- Final design of the sources boxes (early 2017)
- Sources boxes production and tests (end 2017)
- Mounting the boxes on upper ring (mid-2018)
- Tests and Commissioning (end 2018)

