

# *in-situ* Calibration System: status

Laurent Le Guillou (UPMC/LPNHE) Sonia Karkar (IN2P3/LPNHE) Julien Guy (IN2P3/LPNHE)

> DESI Spectrograph Telecon Nov. 21<sup>st</sup>, 2017

Christophe Balland, Julien Coridian, Patrick Ghislain, Julien Guy, Sonia Karkar (project engineer), Laurent Le Guillou



## **Talk outline**

- Overview
- Lambertian diffusion screen
- Calibration light sources (boxes)
  - Boxes assembly
  - Tests plan
- Planning







### **Telescope and Dome dimensions**





#### Rationale



- **Spectral lamps** to get the wavelength solution (CCD pixels to wavelength)
  - $\rightarrow$  required : enough well separated atomic lines
- **Continuum lamps** for flats (fiber to fiber uniformity)

 $\rightarrow$  required : a « flat » enough spectrum on the whole spectro range (350 – 1000 nm)

#### • Spatial uniformity / pupil uniformity :

- $\rightarrow$  4 identical boxes on the upper ring
- $\rightarrow$  A quasi perfectly lambertian diffusion screen





## Calibration System Requirements (DESI-1067)

| Req't Name                | Requirement                                                                                                                                                         | Rationale                                                                                 | Verification<br>method                                      |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Bandpass                  | 360-980 nm                                                                                                                                                          | Required for z range of Ly-<br>alpha QSOs and ELGs<br>(DESI-0318)                         | Laboratory tests:<br>measure lines<br>lamps spectrum        |
| Pupil<br>Uniformity       | <b>20%</b> (azimuthally averaged)                                                                                                                                   | PSF stability of 3% req.<br>IN.FBR-5013,<br>(DESI-0581 v8)                                | Measured lamp<br>luminance plus<br>analysis                 |
| Field<br>Uniformity       | <b>5%</b> (relative to the telescope field response to a constant sky intensity)                                                                                    | ELG redshift efficiency and<br>catastrophic failure rate<br>unchanged                     | Measured lamp<br>luminance plus<br>analysis                 |
| Spectral Line<br>Coverage | Wavelength calibration precision<br>better than 0.15 pixel or 0.08 A<br>(this requires "approximately"<br>a max. <b>bright line separation of</b><br><b>40 nm</b> ) | Required for accurate<br>spectral extraction.<br>(DESI-318)                               | Laboratory tests:<br>measure lines<br>lamps spectrum        |
| Continuum<br>flatness     | Maximal spectral variation of a factor 10 (max/min) in counts                                                                                                       | Calibration images above<br>noise and below non-linear<br>regime & brighter-fatter effect | Laboratory tests:<br>measure<br>continuum lamps<br>spectrum |



#### Dome Screen: the existing screen was too small





**Dark Energy Spectroscopic Instrument** 

Laurent Le Guillou (UPMC/LPNHE) DESI Spectrograph Telecon – Nov 21<sup>tst</sup>, 2017 8 / 28

## Lambertian Screen Upgrade



« Permaflect » coating :

→ Lambertian reflectivity

Replacing all panels for better uniformity

Permaflect - 94 BRDF at 20° Incident Beam









#### Larger screen installed at Mayall (panel fixed since)





**Dark Energy Spectroscopic Instrument** 

Laurent Le Guillou (UPMC/LPNHE) DESI Spectrograph Telecon – Nov 21<sup>tst</sup>, 2017 10 / 28

## Four Source boxes







Laurent Le Guillou (UPMC/LPNHE) DESI Spectrograph Telecon – Nov 21<sup>tst</sup>, 2017 12 / 28

## Four Sources Boxes should be enough

- First study by P. Jelinsky, using ray tracing ✓
  - Define need for 4 sets of lamps
  - Careful analysis of fiber to fiber uniformity
- New code (J. Guy), purely geometrical, interfaced with DESI model
  - Reproduce previous results
  - Investigate effect of intensity variation of lamps On going





Laurent Le Guillou (UPMC/LPNHE) DESI Spectrograph Telecon – Nov 21<sup>tst</sup>, 2017 13 / 28

## Spectral sources (arcs): spectral lines coverage

#### Impact the wavelength solution:

- Rough estimate with MC gives 40 nm max. spacing
- Example with third pipeline data challenge (DC3) of DESI and SDSS/BOSS lines

#### Lack of lines coverage affects the precision of the wavelength solution

combination of 5 lamps to get enough well separated lines: Hg(Ar), Cd, Ne, Kr, Xe





Laurent Le Guillou (UPMC/LPNHE) DESI Spectrograph Telecon – Nov 21<sup>tst</sup>, 2017 14 / 28

## **Spectral sources**

• Spectrum data from manufacturers / NIST atomic lines





Spectral lamps from UVP/Pen-Ray. Tested and validated.



### **Concept: 4 Sources Boxes, removable drawers**

- **One drawer per lamp**, containing the lamp and its power supply
- Boxes (crates) following the NIM crate geometric specs, removable drawers too.
- Power supply provided by a PDU (Raritan, 8 sockets), Ethernet remote control (ssh, SNMP, etc).
- Temperature & humidity sensors attached to the PDU : integrated alarm system.
- The 4 PDU may be chained (USB) to appear as a unique device.







Laurent Le Guillou (UPMC/LPNHE) DESI Spectrograph Telecon – Nov 21<sup>tst</sup>, 2017 18 / 28

#### Spectral lamps selected: Cd, Xe, Ne, Kr, Hg(Ar)





**Dark Energy Spectroscopic Instrument** 

Laurent Le Guillou (UPMC/LPNHE) DESI Spectrograph Telecon – Nov 21<sup>tst</sup>, 2017 19 / 28

## **Continuum lamps**





current continuum lamps (halogen) available at the Mayall "low flux" lamps have a blue filter to balance their spectrum.

- Coverage problems and flux instability with the existing continuum lamps
- **Discussion on a additional set of powerful LED** (with P. Martini)



### **Continuum lamps: halogens + blue filter**



- Baseline : one drawer with halogen lamps and a blue filter to reduce the red part of the spectrum
- Spectra taken on our spectrophotometric testbench, data analysis ongoing (uncertainties with the throughput of our monochromator).
- Not much flux below 400 nm ; possibility to add UV LEDs to complete (tests ongoing)



### Synthetic continuum (350-1000nm) with LEDs





**Dark Energy Spectroscopic Instrument** 

Laurent Le Guillou (UPMC/LPNHE) DESI Spectrograph Telecon – Nov 21<sup>tst</sup>, 2017 23 / 28

#### Boxes (crates) anodized and reassembled





**Dark Energy Spectroscopic Instrument** 

Laurent Le Guillou (UPMC/LPNHE) DESI Spectrograph Telecon – Nov 21<sup>tst</sup>, 2017 24 / 28





Dark Energy Spectroscopic Instrument

Laurent Le Guillou (UPMC/LPNHE) DESI Spectrograph Telecon – Nov 21<sup>tst</sup>, 2017 25 / 28

#### Drawers anodized, on-going re-assembly





Laurent Le Guillou (UPMC/LPNHE) DESI Spectrograph Telecon – Nov 21<sup>tst</sup>, 2017 26 / 28

### **Spectral Lamp Drawers: HV Power Supply**





Dark Energy Spectroscopic Instrument

Laurent Le Guillou (UPMC/LPNHE) DESI Spectrograph Telecon – Nov 21<sup>tst</sup>, 2017 27 / 28

## **Tests before shipping**

- Functional tests (partly completed)
  - PDU, power/current limits, heating, PDU control, DESI ICS
  - Thermal tests (climate chamber), choosing PDU sensors limits...
- Lamps (partly done)
  - Stability, photometric level (double check), spectra...
  - Heating time, Lamp aging
  - Continuum lamps : checking the beam shape (screen distance) for uniformity
- **Mechanical tests** (to do on reassembled boxes)
  - Mechanical checks : boxes attached on the LSST carousel testbench



#### **Photometric measurements (photometric bench)**





Dark Energy Spectroscopic Instrument

Laurent Le Guillou (UPMC/LPNHE) DESI Spectrograph Telecon – Nov 21<sup>tst</sup>, 2017 29 / 28

#### Tests in climate chamber: works -20°C to +40°C





Dark Energy Spectroscopic Instrument

Laurent Le Guillou (UPMC/LPNHE) DESI Spectrograph Telecon – Nov 21<sup>tst</sup>, 2017 30 / 28

#### Lamps: spectro-photometric tests





**Dark Energy Spectroscopic Instrument** 

Laurent Le Guillou (UPMC/LPNHE) DESI Spectrograph Telecon – Nov 21<sup>tst</sup>, 2017 31 / 28

#### Planned mechanical tests (rotation of the boxes)





Dark Energy Spectroscopic Instrument

Laurent Le Guillou (UPMC/LPNHE) DESI Spectrograph Telecon – Nov 21<sup>tst</sup>, 2017 32 / 28

## **Planning: milestones**

- + (re)Assembly of the boxes and spectral drawers (nov. 2017)
- Complete tests (expected to be achieved late Jan 2018)
- Shipping to Kitt Peak (early Feb. 2018)
- Mounting the boxes on upper ring (April 2018)
- Commissioning (end 2018)
- Continuum lamps:
  - Plan A : halogens + blue filters: early Feb. 2018
  - Plan B : continuum with LEDs: late 2018 / early 2019

