

DESI Spectro. EM#1 Throughput Measurement

Laurent Le Guillou (Sorbonne Univ. /LPNHE)

> DESI France, LPNHE 2018-02-02

LPNHE : Julien Coridian, Patrick Ghislain, Julien Guy, Sonia Karkar, Laurent Le Guillou, Yann Orain, Philippe Repain, Eduardo Sepulveda AMU : Pierre-Eric Blanc, Sandrine Perruchot, Xavier Regal, Samuel Ronayette

Talk outline

- Throughput Measurement: Principles
- Flux Calibration Device for the Test Fiber Slit
- Measurement Campaigns
- Data analysis (Preliminary)
 - Flux measurements with the calibrated photodiode (DKD)
 - LED spectra with DESI spectrograph: reduction, extraction
 - Exposure time: shutter time correction
 - Gain correction: Gain of the CCD amplifiers
 - First direct throughput estimate (without a throughput model)
 - Combining with a model derived from Tungstene lamp exposures
- Focal Ratio Degradation (FRD) estimate

The DESI spectrograph

Laurent Le Guillou (Sorbonne Université / LPNHE) DESI France – Paris, LPNHE, Feb 2nd, 2018 3 / 75

The DESI spectrograph

Incl. in Spectro. Qualification Tests (AMU)

Illumination Testbench (AMU@Winlight)

Sparse fiber slit(s): allows single fiber illumination

Laurent Le Guillou (Sorbonne Université / LPNHE) DESI France – Paris, LPNHE, Feb 2nd, 2018 7 / 75

Fiber slit(s): "sparse fiber slit"

- 21 well separated fibers
- May be illuminated individually (AMU bench)

Fiber : f/3.57 Angle $\theta \sim 8^{\circ}$

Dark Energy Spectroscopic Instrument

Throughput measurement principles

- Motivation : for many previous spectrograph projects, effective transmission much lower than predicted from optical models. Huge risk, may endanger the DESI science.
- Measurement to be done during **slit removal/reinstall** repeatability test (limited overhead)
- Calibration of the total flux at the exit of each fiber of the sparse fiber slit
- **Proposed Procedure** : for the same illumination setups (LEDs)
 - (1) Sparse Test Slit outside of the spectrograph, in front of our device : flux (in the same illumination conditions) measured by our calibrated photodiode, for each LED / fiber ;
 - (2) Sparse Test Slit inside the spectrograph : integrated flux measured on the CCD for the 3 arms of the spectrograph for each LED / fiber ;
 - Ratio (1)/(2) gives throughput (from fiber exit to the CCD included)

Mechanical design

Throughput measurement device

Throughput measurement device

Laurent Le Guillou (Sorbonne Université / LPNHE) DESI France – Paris, LPNHE, Feb 2nd, 2018 13 / 75

Calibrated Photodiode

- MD-37-SU100 calibrated (spectral responsivity [A/W])
 - **DKD** (DE) certified absolute calibration
 - 2 % on 250 1100 nm.
- Size : 10x10 = 100 mm²
- Photodiode current readout : picoammeter
 Keithley 6514, or better 6482 (2 channels), (fA)
- Simultaneous monitoring of :
 - Light flux in the integrating sphere
 - Light flux exiting the fiber
 - \rightarrow Control of the illumination stability

Illumination Testbench (AMU)

Laurent Le Guillou (Sorbonne Université / LPNHE) DESI France – Paris, LPNHE, Feb 2nd, 2018 15 / 75

Illumination Testbench (AMU)

LED spectra: compact spectra

Photodiode Calibration (DKD certified)

Photodiode Calibration (DKD certified)

Intercalib. : DICE spectrophotometric bench

Czerny-Turner monochromator with a triple grating turret. DICE 24-LED ultra stable source. attached on a XY motorized stage. Plateform fixed on a XYZ motorized stage Several photodiodes and other sensors could be attached to this plateform. X : [0 : 300 mm] Z motorized stage (range 1593 mm) Z : [-1593 : 0 mm] X : [0 : 150 mm] Y: [0: 300 mm] Y: [0: 150 mm] NIST (0.2%) DKD

Photodiode Calibration & checks at LPNHE

Photodiode Calibration & checks at LPNHE

Integration on the AMU Testbench

- Challenging mechanical interface between the fiber slit and our device (collision with fiber ends should be avoided at all cost!!)
- Integration within the AMU testbench software and the ICS (Xavier Regal, AMU)

Integration on the AMU Testbench (dark box)

Installation at Winlight (sept. 2016)

Dark Energy Spectroscopic Instrument

Laurent Le Guillou (Sorbonne Université / LPNHE) DESI France – Paris, LPNHE, Feb 2nd, 2018 25 / 75

Installation at Winlight (sept. 2016)

Dark Energy Spectroscopic Instrument

Laurent Le Guillou (Sorbonne Université / LPNHE) DESI France – Paris, LPNHE, Feb 2nd, 2018 26 / 75

Installation at Winlight (sept. 2016)

Dark Energy Spectroscopic Instrument

Laurent Le Guillou (Sorbonne Université / LPNHE) DESI France – Paris, LPNHE, Feb 2nd, 2018 27 / 75

Scan of the fiber beam by moving the photodiode

Measurements campaigns (2017)

- 1st campaign: Jan 31 to Feb 2, 2017 (LLG, JG, PEB, SR)
 - Absolute flux measurements (slit in the box)
 - Separate spectra of all LEDs / individual fibers (slit in spectro)
 - Scanning the fiber beam with the entire 10x10 photodiode
 - CCD frames to estimate true shutter time (W)
 - CCD frames to estimate the amplifier gains (W)

Measurements campaigns (2017)

- 2nd campaign: March 14 17, 2017 (LLG, PEB, SR)
 - Absolute flux measurements (slit in the box)
 - Separate spectra of all LEDs / individual fibers (slit in spectro)
 - Scanning the fiber output beam with the entire photodiode
 - Scanning the fiber output beam with a 100 μ m slit in front of the photodiode (to model the beam and estimate the FRD)
 - CCD frames to estimate true shutter time (W)
 - CCD frames to estimate the amplifier gains (W)
 - Flat slit available: flats, for better ampli. gain measurements
- 3rd campaign: July 3 5, 2017 (LLG, PEB) (cancelled due to shutter problems)

Throughput measurement principles

- Measurement to be done during **slit removal/reinstall** repeatability test (limited overhead)
- Calibration of the total flux at the exit of each fiber of the sparse fiber slit
- **Proposed Procedure** : for the same illumination setups (LEDs)
 - (1) Sparse Test Slit outside of the spectrograph, in front of our device : flux (in the same illumination conditions) measured by our calibrated photodiode for each LED / fiber ;
 - (2) Sparse Test Slit inside the spectrograph : integrated flux measured on the CCD for the 3 arms of the spectrograph for each LED / fiber ;
 - Ratio (1)/(2) gives throughput (from fiber exit to the CCD included)

Scan of all the sparse slit fibers (centering)

1 broken fiber; last one unreachable (mechanical limit)

Absolute flux measurements (DKD photocurrent)

- For each fiber, for each LED :
 - centering the DK photodiode to catch the whole beam
 - measuring the photocurrent
- Cycling over OPEN, DARK, and other neutral densities filters
- Subtracting dark current
- Photocurrents RMS < 0.01 pA

Laurent Le Guillou (Sorbonne Université / LPNHE) DESI France – Paris, LPNHE, Feb 2nd, 2018 33 / 75

DKD photocurrents analysis

Throughput measurement principles

- Measurement to be done during **slit removal/reinstall** repeatability test (limited overhead)
- Calibration of the total flux at the exit of each fiber of the sparse fiber slit
- **Proposed Procedure** : for the same illumination setups (LEDs)
 - (1) Sparse Test Slit outside of the spectrograph, in front of our device : flux (in the same illumination conditions) measured by our calibrated photodiode for each LED / fiber ;
 - (2) Sparse Test Slit inside the spectrograph : integrated flux measured on the CCD for the 3 arms of the spectrograph for each LED / fiber ;
 - Ratio (1)/(2) gives throughput (from fiber exit to the CCD included)

Integrated LED flux [e-/s] on the 3 CCDs

- For each LED, for each fiber 11 20, a separate exposure
- Frames are reduced (DESI pipeline), spectrum region is integrated
- CCD amplifier gains [ADU \rightarrow e-] are applied
- Resulting CCD flux [e-] is then divided by the effective exposure time
- The resulting spectrum is **integrated on the whole arm wavelength range**

$$\phi_{\text{[e-/s]}}^{\text{CCD}} = \frac{\text{gain}_{\text{[e-/ADU]}}^{\text{ampli}} \times \sum_{\text{ill. pixels}}^{\text{spectrum}} \phi_{\text{[ADU]}}^{\text{CCD}}(\text{pixel})}{\Delta t_{[\text{s}]}^{\text{exposure}}}$$

• We need to calibrate the exposure time and the CCDs amplifiers gains

LED spectra

Dark Energy Spectroscopic Instrument

Laurent Le Guillou (Sorbonne Université / LPNHE) DESI France – Paris, LPNHE, Feb 2nd, 2018 37 / 75

LED spectrum extraction (pipeline JG)

- Removing Bias / Dark current (dark model)
- Automatic extraction of all fiber spectra
- « Boxcar » : sum on 9 CCD pixel wide
- Wavelength calibration from lamps and PSF model
 - Wavelength calibration better than 0.1 nm (no temperature correction)
- We verify that the **background is consistent with zero**
- We assume gain = 1 and the gain correction is applied later

Spectrum in DESI arm B1: LED#1: 370 nm

Spectrum in DESI arm B1: LED#2: 465 nm

Spectrum in DESI arm R1: LED#3: 591 nm

Spectrum in DESI arm R1: LED#4: 631 nm

Spectrum in DESI arm Z1: LED#5: 870 nm

Spectrum in DESI arm Z1: LED#6: 940 nm

Exposure time : shutter time correction

- Series of exposures with **increasing exposure time** and **different neutral densities** filters have been taken (first and second campaigns).
- Non-linearity corrections were needed.

 Assuming at least linearity for low fluxes, we were able to estimate an effective exposure time correction (same result on the 3 arms) :

 $\Delta t_{\text{effective}} = [\text{EXPREQ}] + 0.36 \,\text{s} \pm 0.01 \,\text{s}$

• Q : What is EXPTIME (in FITS headers) ?

Amplifier gain determination (DESI-2657, JG)

- We measured the amplifier gains with a PTC (Pixel Transfer Curve) (variance versus mean flux curve)
- Amplifier gains were estimated in two ways :
 - Tungsten lamp spectra (DESI-2657), → ramp of exposure time, exposure pairs
 - Flat with flat slit, tungsten, (2017-03-29), → ramp of exposure time, exposure pairs

Amplifier gain determination : PTC (arm B)

- Building PTC (photon transfer curve) for each CCD amplifier
- **b amplifiers** are reasonably **linear**
- Using tungsten spectra

Amplifier	gain
B1-A	0.587
B1-B	0.614
B1-C	0.630
B1-D	0.615

See DESI-2657 (JG)

Laurent Le Guillou (Sorbonne Université / LPNHE) DESI France – Paris, LPNHE, Feb 2nd, 2018 50 / 75

Amplifier gain determination : PTC (arm R)

- Amplifier r1-A unusable
- Other r amplifiers are reasonably linear
- Using tungsten spectra

Amplifier	gain
R1-A	unusable
R1-B	1.658
R1-C	1.726
R1-D	1.723

• See DESI-2657 (JG)

Amplifier gain determination : PTC (arm Z)

- Highly non-linear amplis
- Z1-C unusable
- Using tungsten spectra

Amplifier	Gain (< 5000)
Z1-A	1.072
Z1-B	1.135
Z1-C	Unusable
Z1-D	0.774

• See DESI-2657 (JG)

Laurent Le Guillou (Sorbonne Université / LPNHE) DESI France – Paris, LPNHE, Feb 2nd, 2018 52 / 75

Amplifier gain (flat slit, tungsten): b1-D

Amplifier gain (flat slit, tungsten): r1-B

Amplifier gain (flat slit, tungsten): z1-B

Amplifier gain determination (flat slit, tungsten)

• Gains obtained with a PTC with flat slit exposure, tungsten lamp :

Amplifier	gain	Amplifier	gain	Amplifier	Gain (< 5000)
B1-A	0.546	R1-A	unusable	Z1-A	-
B1-B	0.619	R1-B	1.681	Z1-B	1.047
B1-C	0.624	R1-C	1.666	Z1-C	???
B1-D	0.602	R1-D	1.677	Z1-D	0.687

- For this analysis, we used the gains **obtained from the flat slit exposures** (seem more reliable)
- For b1 & r1, gain systematics around 3 %
- For z1, huge uncertainties due to the important non-linearity

Measurement strategy: using fibers 11 – 20

- r1-A unusable
- z1-C unusable
- We choose to take LED spectra only with amplifiers B and D
 - \rightarrow fibers 11 to 20
- Limiting the flux in all spectra (< 5000 ADU in all pixels) to avoid amplifiers non-linearity

Direct throughput estimate (without a model)

• We first estimate the spectrograph throughput by **dividing** the **integrated flux in each CCD** (for each LED and each fiber 11-20) by the **injected flux (DKD)** :

$$\eta_{[e-/\gamma]}(\lambda_{\text{LED}}) = (QE_{\text{CCD}} \times T_{\text{optics}}(\lambda_{\text{LED}})) = \frac{\phi_{[e-/s]}^{\text{CCD}}(\text{LED})}{\phi_{[\gamma/s]}^{\text{injected}}(\text{LED})}$$

- For the moment, no FRD correction (see below).
- What we got that way is an **estimate of the spectrograph throughput** at the LED wavelength (weighted by the LED spectrum)
- Comparison with the **DESI optical model** (without fibers)

Direct throughput estimate (without a model)

Throughput shape from Tungsten lamp exposures

- Derived from Tungsten lamp exposures
- Hypotheses on Tungsten spectrum (blackbody, Thorlabs specs)
- Normalisation to be determined ! Gives the shape of the throughput function
- « Absorption » features : some are real and also seen in LED spectra (see below)

Spectrum in DESI arm B1: LED#1: 370 nm

Spectrum in DESI arm B1: LED#2: 465 nm

Spectrum in DESI arm R1: LED#3: 591 nm

Spectrum in DESI arm R1: LED#4: 631 nm

Spectrum in DESI arm Z1: LED#5: 870 nm

Spectrum in DESI arm Z1: LED#6: 940 nm

Anchoring Tungsten to LED measurements

With a model of the tungsten lamp spectrum

Result: Very Low Throughput in B & Z(NIR) arms

Very Low Throughput in B and Z arms: why ?

Hypothesis: are some VPHG upside-down?

VPHG were mounted upside-down in B & Z arms

Laurent Le Guillou (Sorbonne Université / LPNHE) DESI France – Paris, LPNHE, Feb 2nd, 2018 79 / 75

VPHG were mounted upside-down in B & Z arms

- **B & Z VPHG** were dismounted and **remounted in the right orientation** (June 2017).
- First checks with Tungsten lamp show that the throughput has been improved. July campaign cancelled (shutter problems)

Next: estimating the FRD from fiber beam scans

Dark Energy Spectroscopic Instrument

Laurent Le Guillou (Sorbonne Université / LPNHE) DESI France – Paris, LPNHE, Feb 2nd, 2018 81 / 75

Systematics: FRD, estim. from fiber beam scans

Beam central occultation (convolved by the 100 microns slit)

- Using the 100 microns slit scans to model the fiber exit beam
- Estimating the Focal Ratio Degradation from this dataset
- Scan shapes vary from fiber to fiber
- On-going analysis

Laurent Le Guillou (Sorbonne Université / LPNHE) DESI France – Paris, LPNHE, Feb 2nd, 2018 82 / 75

Conclusions et perspectives

We designed, built, tested at LPNHE, installed at Winlight and used a device to measure the throughput of the DESI spectrographs.

 Measurements for spectro EM#1 : very low throughput in B1 and Z1.

Allowed to fix the wrong mounting of 2 VPHG in B and Z arms, for EM#1 and the 9 next ones. Fixed the mounting procedure and validated the usefulness of this measurement.

 Next campaign: late Feb / early March 2018 on Spectrograph SM#1 (EM#1 refurbished).

Two DESI notes (in prep.), maybe a paper (measurement method).

