

DESI SM#2 & SM#3 Throughput Measurement

Laurent Le Guillou (Sorbonne Univ. / LPNHE) Julien Guy (LBL)

> DESI Spectro Telecon 2018-12-18

LPNHE : Julien Coridian, Patrick Ghislain, Julien Guy, Sonia Karkar, Laurent Le Guillou, Yann Orain, Philippe Repain, Eduardo Sepulveda AMU : Pierre-Eric Blanc, Sandrine Perruchot, Xavier Regal, Samuel Ronayette CEA : C. Magneville

Meas. campaigns: SM#3 (oct. 18) SM#2 (dec. 18)

• SM#3 campaign: October 28th-31st (LLG, PEB)

We moved something (probably the masks in the Offner):

- \rightarrow "before" spectro dataset not usable (and less flux injected in fibers)
- SM#2 campaign: December 9th-12th (LLG, PEB)
 - Everything went well
 - Some extra scans (full 10x10mm photodiode scans) for FRD

Exposure time : shutter time correction

- Series of exposures with **increasing exposure time** and **different neutral densities** filters have been taken.
- Shutter control system had been changed due to shutter problems in July 2017. Shutter is opening & closing at a lower speed now.
- Assuming at least linearity for low fluxes, we were able to estimate an effective exposure time correction (**same result on the 3 arms**) :

$$\Delta t_{\text{effective}}^{\text{EM}\#1} = [\text{EXPREQ}] + 0.36 \,\text{s} \pm 0.01 \,\text{s}$$
$$\Delta t_{\text{effective}}^{\text{SM}\#1} = [\text{EXPREQ}] + 0.662 \,\text{s} \pm 0.003 \,\text{s}$$
$$\Delta t_{\text{effective}}^{\text{SM}\#2} \simeq [\text{EXPREQ}] + 0.660 \,\text{s}$$
$$\Delta t_{\text{effective}}^{\text{SM}\#3} \simeq [\text{EXPREQ}] + 0.637 \,\text{s}$$

SM#2: Gains measured at CEA/Saclay (CMV)

- Much better CCDs, readout system with identical setup at CEA & Winlight
- Cryos & CCD of SM#3 were mounted on SM#2 (and vice-versa)
- Gains obtained with a PTC with **true flats on the CEA / Saclay testbench** after CCD integration into the cryostats (Ch. Magneville (CMV) & colleagues).
- Gains were double checked with data taken at Winlight (JG).

Amplifier (Blue CCD)	gain	Amplifier (Red CCD)	gain	Amplifier (NIR/Z CCD)	gain
B1-A (CEA top-left)	1.28	R1-A (CEA top-right)	1.66	Z1-A (CEA bottom-right)	1.48
B1-B (CEA bottom-left)	1.29	R1-B (CEA top-left)	1.50	Z1-B (CEA bottom-left)	1.49
B1-C (CEA top-right)	1.32	R1-C (CEA bottom-right)	1.60	Z1-C (CEA top-right)	1.67
B1-D (CEA bottom-right)	1.31	R1-D (CEA bottom-left)	1.60	Z1-D (CEA top-left)	1.67

SM#3: Gains measured at CEA/Saclay (CMV)

- Much better CCDs, readout system with identical setup at CEA & Winlight
- Cryos & CCD of SM#2 were mounted on SM#3 (and vice-versa)
- Gains obtained with a PTC with **true flats on the CEA / Saclay testbench** after CCD integration into the cryostats (Ch. Magneville (CMV) & colleagues).
- Gains were double checked with data taken at Winlight (JG).

Amplifier (Blue CCD)	gain	Amplifier (Red CCD)	gain	Amplifier (NIR/Z CCD)	gain
B2-A (CEA top-left)	1.28	R2-A (CEA top-right)	1.77	Z2-A (CEA bottom-right)	1.45
B2-B (CEA bottom-left)	1.27	R2-B (CEA top-left)	1.67	Z2-B (CEA bottom-left)	1.50
B2-C (CEA top-right)	1.27	R2-C (CEA bottom-right)	1.50	Z2-C (CEA top-right)	1.62
B2-D (CEA bottom-right)	1.29	R2-D (CEA bottom-left)	1.53	Z2-D (CEA top-left)	1.52

Direct throughput estimate (without a model)

• We first estimate the spectrograph throughput by **dividing** the **integrated flux in each CCD** (for each LED and each fiber 11-20) by the **injected flux (DKD)** :

$$\eta_{[e-/\gamma]}(\lambda_{\text{LED}}) = (QE_{\text{CCD}} \times T_{\text{optics}}(\lambda_{\text{LED}})) = \frac{\phi_{[e-/s]}^{\text{CCD}}(\text{LED})}{\phi_{[\gamma/s]}^{\text{injected}}(\text{LED})}$$

- A this step, no FRD correction.
- What we got that way is an **estimate of the spectrograph throughput** at the LED wavelength (weighted by the LED spectrum)
- Comparison with the **DESI generic optical model (without fibers)**

SM#2 : direct throughput estimate

Dark Energy Spectroscopic Instrument

Laurent Le Guillou (Sorbonne Université / LPNHE), Julien Guy (LBL) DESI Spectro Telecon – 2018-12-18 7 / 29

SM#2 : direct throughput estimate

Laurent Le Guillou (Sorbonne Université / LPNHE), Julien Guy (LBL) DESI Spectro Telecon - 2018-12-18

SM#3 : direct throughput estimate

Dark Energy Spectroscopic Instrument

Laurent Le Guillou (Sorbonne Université / LPNHE), Julien Guy (LBL) DESI Spectro Telecon – 2018-12-18 9 / 29

SM#3 : direct throughput estimate

Dark Energy Spectroscopic Instrument

Laurent Le Guillou (Sorbonne Université / LPNHE), Julien Guy (LBL) DESI Spectro Telecon – 2018-12-18 10 / 29

Focal Ratio Degradation (FRD) Systematics

Dark Energy Spectroscopic Instrument

Laurent Le Guillou (Sorbonne Université / LPNHE), Julien Guy (LBL) DESI Spectro Telecon – 2018-12-18 11 / 29

Expected 100 microns scan profiles

^{12/29}

Scanning the beam at the fiber exit (100 microns)

Dark Energy Spectroscopic Instrument

Laurent Le Guillou (Sorbonne Université / LPNHE), Julien Guy (LBL) DESI Spectro Telecon – 2018-12-18 13 / 29

Measured scan profiles

Laurent Le Guillou (Sorbonne Université / LPNHE), Julien Guy (LBL) DESI Spectro Telecon – 2018-12-18 14 / 29

FRD Correction & Systematics (preliminary)

• Preliminary estimate of the FRD correction :

Our interpretation :

Numerical Aperture of the fiber : $NA = n_{silica} \sin(\theta_{max})$

NA fibers \rightarrow 0.22 ± 0.02 (Taken from DESI-2472)

Fuse silica optical index : from 1.45 to 1.48 (wavelength)

Corresponding angle \rightarrow 8.72° to 8.54° (consistent with scans half-width)

Spectro acceptance \rightarrow **8.0°** (f / 3.56) (central fiber #11)

Rough estimate of maximum light loss : 14-12 % at max.

(depends in fact of the profile at the fiber exit, so probably less)

→ **The throughput is probably a bit higher**... (on going work)

Systematics / Error budget (tentative)

Systematics	Value
Photodiode calibration	~2 %
Dispersion amongst fibers (3-5% rms)	~1 % on average
Amplifier gains	~3 %
Effective exposure correction	< 1 %
Focal Ratio Degradation Correction	Still to be determined

SM#2 : direct throughput estimate

Laurent Le Guillou (Sorbonne Université / LPNHE), Julien Guy (LBL) DESI Spectro Telecon – 2018-12-18 17 / 29

SM#3 : direct throughput estimate

Dark Energy Spectroscopic Instrument

Laurent Le Guillou (Sorbonne Université / LPNHE), Julien Guy (LBL) DESI Spectro Telecon – 2018-12-18 18 / 29

Suppl. Slides

The DESI spectrograph

The DESI spectrograph

Throughput measurement device

Throughput measurement device

Illumination Testbench

Installation of our device at Winlight

DKD photocurrents analysis

Throughput measurement principles

- Measurement to be done during slit removal/reinstall repeatability test (limited overhead)
- Calibration of the total flux at the exit of each fiber of the sparse fiber slit
- **Proposed Procedure** : for the same illumination setups (LEDs)
 - (1) Sparse Test Slit outside of the spectrograph, in front of our device : flux (in the same illumination conditions) measured by our calibrated photodiode for each LED / fiber ;
 - (2) Sparse Test Slit inside the spectrograph : integrated flux measured on the CCD for the 3 arms of the spectrograph for each LED / fiber ;
 - Ratio (1)/(2) gives throughput (from fiber exit to the CCD included)

Integrated LED flux [e-/s] on the 3 CCDs

- For each LED, for each fiber 11 20, a separate exposure
- Frames are reduced (DESI pipeline), spectrum region is integrated
- CCD amplifier gains [ADU \rightarrow e-] are applied
- Resulting CCD flux [e-] is then divided by the effective exposure time
- The resulting spectrum is **integrated on the whole arm wavelength range**

$$\phi_{\text{[e-/s]}}^{\text{CCD}} = \frac{\text{gain}_{\text{[e-/ADU]}}^{\text{ampli}} \times \sum_{\text{ill. pixels}} \phi_{\text{[ADU]}}^{\text{CCD}}(\text{pixel})}{\Delta t_{[\text{s}]}^{\text{exposure}}}$$

• We need to calibrate the exposure time and the CCDs amplifiers gains

