
pysbig
Python module for SBIG Camera

User’s Manual
Release 0.8

Laurent Le Guillou

October 18, 2006

Mercator Telescope, P.O. Box 474, C/A. de Abreu 70, E-38700 Santa Cruz de La Palma, Spain

ii

Legal Notice

Please see file gpl.txt in the source distribution.

Python module for SBIG CCD camera - version 0.8 - Copyright (C) 2006 Laurent Le Guilloullg@lpnhep.in2p3.fr
Mercator Telescope, C/A. de Abreu 70, 38700 Santa Cruz de La Palma, Spain

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free
Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

iii

iv

CONTENTS

1 Introduction 3

2 Installation 5
2.1 Testing the Python installation. 5
2.2 Installing the SBIG low level driver. 6
2.3 Installation ofpysbig from sources . 6

3 Overview 7
3.1 Initialisation . 7
3.2 CCD camera details. 8
3.3 Temperature control. 9
3.4 Exposure. 9
3.5 CCD frame readout. 10
3.6 Saving the frame as a FITS file. 10
3.7 End of the program. 11
3.8 Exceptions . 11

4 Functions 13
4.1 Initialisation and driver control . 13
4.2 Exposure and Readout. 16
4.3 Temperature regulation. 18
4.4 Control parameters. 19
4.5 External devices: filter wheel, mirror tip-tilt, etc.. 20

5 Issues 21
5.1 Array support. 21
5.2 Known bugs . 21
5.3 Not implemented. 21

Index 27

i

ii

pysbig (“sbig ”) is a Python extension to control SBIG CCD cameras. It has been developed in the framework of
the HERMES spectrograph project to control the instrument guiding camera (based on a SBIG ST-1603ME), but may
prove useful for other SBIG CCD cameras as well.

The present document is known as HERMES-WP-430-05 in the HERMES project documentation system.

Contents 1

2

CHAPTER

ONE

Introduction

This chapter introduces thepysbig Python extension and outlines the rest of the document.

This manual contains:

Installing pysbig Chapter 2 provides information on compiling and installing thepysbig extension from sources.

Overview Chapter 3 gives an overview of thepysbig module and provides step-by-step instructions to use it.

Functions Chapter 4 provides a detailed description of thepysbig functions.

Issues Chapter 5 discusses the limitations, bugs and issues of the current version of thepysbig module.

Where to get information and code

The pysbig Python extension has been written in the framework of the Hermes echelle-spectrograph project
http://hermes.ster.kuleuven.be. This instrument, developped by a consortium lead by the Institute of Astronomy of
the Katholieke Universiteit of Leuven (Belgium), will be installed on the Mercator telescope in La Palma (Canary
Islands, Spain) in 2007. The guiding camera of the spectrograph is a SBIG ST-1603ME CCD camera for which we
wrote the present software.

The source code can be obtained by contacting the HERMES project coordinators, Hans Van Winckel
hans@ster.kuleuven.beand Gert Raskingert@ster.kuleuven.be, or Laurent Le Guilloullg@lpnhep.in2p3.fr.

Please send comments and corrections to this manual togert@ster.kuleuven.beor llg@lpnhep.in2p3.fr, or write to
Mercator Telescope, Sea-level Office, P.O. Box 474, C/A. de Abreu 70, E-38700 Santa Cruz de La Palma, Canary
Islands, Spain.

3

4

CHAPTER

TWO

Installation

This chapter explains how to install and test the Pythonpysbig module.

2.1 Testing the Python installation

The first step is to install Python if you haven’t already. Python is available from the Python project page at
http://sourceforge.net/projects/python. Click on the link corresponding to your platform, and follow the instructions
described there. The Pythonpysbig module requires version Python 2.3 at a minimum. When installed, starting
Python by typingpython at the shell or double-clicking on the Python interpreter should give a prompt such as:

Python 2.3 (#2, Aug 22 2003, 13:47:10) [C] on sunos5
Type "help", "copyright", "credits" or "license" for more information.

If you have problems getting this part to work, consider contacting a local support person or emailingpython-
help@python.orgfor help. If neither solution works, consider posting on thecomp.lang.pythonnewsgroup.

Before proceding to the installation, please check that thenumarray extension is present on your platform (to manip-
ulate the produced CCD frames which are given asnumarray arrays). Thepyfits module is not strictly required,
but it may prove useful to store frames as FITS files.

You may check ifnumarray has been installed on your platform by doing:

Python 2.3 (#2, Aug 22 2003, 13:47:10) [C] on sunos5
Type "help", "copyright", "credits" or "license" for more information.
>>> import numarray
>>>

If the numarray module is absent you will obtain instead:

Python 2.3 (#2, Aug 22 2003, 13:47:10) [C] on sunos5
Type "help", "copyright", "credits" or "license" for more information.
>>> import numarray
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ImportError: No module named numarray
>>>

In that case, you need to install thenumarray extension before trying to installpysbig .

Thepysbig module has been developped and tested on Debian GNU/Linux etch. It should work as well on other

5

Linux/UNIX platforms. For MS Windows platforms, some tests are probably needed.

2.2 Installing the SBIG low level driver

The Python modulepysbig is based on the underlying SBIG low-level driver distributed by SBIG. The SBIG driver
(with the associated firmware) and the SBIG libraries should be properly installed on your system before compiling
the Python module. Please refer to the SBIG documentation [1] and to the HERMES-WP-430-04 Hermes Project
document [2] when installing the SBIG low level driver.

2.3 Installation of pysbig from sources

To be able to compile the module, you will need the Python headers files. In some Linux distributions, they are
distributed as a separate package (from the main Python packages) named “python-dev ” or “ python2.3-dev ”
(or something equivalent). On other Unix systems you may need to install the Python source tree before proceeding.

It may be necessary to define or modify your LDLIBRARY PATH in order to include the path for the needed
dynamic SBIG libraries (‘libsbigcam.so’, ‘ libsbigudrv.so’). Please refer to the HERMES-WP-430-04 document [2].

Once you have copied and unpacked thepysbig module source tree (withtar) from the tarball ‘sbig-X.X.tar.gz’,
you can proceed with the compilation and the installation. Choose the destination directory prefix where you want to
install the module (‘/usr/local’ is the default), and run:

python setup.py install --prefix=<PREFIX>

You may need to define or modify the PYTHONPATH environment variable to include ‘¡PREFIX¿/lib/python2.3/site-
packages/’. Otherwise Python will not be able to find thepysbig module when you will try to load it.

To test if it works, just try to load the module:

python
Python 2.3.5 (#2, Aug 30 2005, 15:50:26)
[GCC 4.0.2 20050821 (prerelease) (Debian 4.0.1-6)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import sbig
>>> print sbig.__version__
’0.8’

You can now enjoy using thepysbig extension!

6 Chapter 2. Installation

CHAPTER

THREE

Overview

The aim of this chapter is to give you a short overview of the main features of thepysbig extension. To do so,
we will study an example of a typical Python script based on thepysbig extension (This script is available in the
pysbig source distribution as ‘examples/readout.py’).

3.1 Initialisation

The script begins with the usual extension imports, including, of course, the import of thepysbig extension.

1 #! /usr/bin/env python
2 import os, sys, time
3 import sbig # this module
4 import pyfits # only for FITS output

To send commands to the SBIG CCD camera, the first step is to initialise the SBIG driver with theopen driver
function. If a problem occurs aSBIGDriverError exception will be raised.

5 try:
6 sbig.open_driver()
7 except sbig.SBIGDriverError, msg:
8 print >>sys.stderr, msg
9 sys.exit(2)

Once the driver is opened, you may send a request to the USB bus to identify all the SBIG USB cameras connected to
the system with thequery usb function.

10 try:
11 devices = sbig.query_usb() # return list of USB SBIG cameras found
12 except sbig.SBIGDriverError, msg:
13 print >>sys.stderr, msg
14 sys.exit(2)

In the current version of the SBIG library, this function is buggy and will only work once; each subsequent call will
return an empty list of devices, whenever one or several SBIG cameras are connected to the USB ports. It is necessary
to close the driver and open it again (and sometimes even to power cycle the camera) to obtain the correct list of USB
connected devices.

15 try:
16 sbig.open_device(sbig.DEV_USB)
17 except sbig.SBIGDriverError, msg:
18 print >>sys.stderr, "Unable to open SBIG camera device"

7

19 print >>sys.stderr, "Error: ", msg
20 sys.exit(3)

Once the device has been opened, the communication link to the camera should be established. It is often needed
to repeat several times the call to theestablish link function to establish the link (advice of Jan Soldan, co-
maintainer of the SBIG low level driver). A typical program using the SBIG camera can initialise the link like this:

21 tries=5
22 camera_type = sbig.NO_CAMERA
23 for i in xrange(tries):
24 try:
25 camera_type = sbig.establish_link()
26 break
27 except sbig.SBIGDriverError, msg:
28 print >>sys.stderr, msg, "Trying again..."
29 pass
30 if (camera_type == sbig.NO_CAMERA):
31 print >>sys.stderr, "Cannot establish link with the camera."
32 sys.exit(4)

3.2 CCD camera details

Once the link with the camera has been established, it is possible to get precise informations about the CCD model
(size, gain), and the available readout modes with that model, by using theget ccd info function.

33 ccd_info = sbig.get_ccd_info()

It returns a dictionary with this structure:

ccd_info = { "firmware": firmware,
"type": cameraType,
"name": cameraName,
"modes": { mode_id: mode_info, mode_id: mode_info, ... } }

wherefirmware, cameraTypeandcameraNameare identifiers of the firmware and the camera model, andmodesa
dictionary where the keys are the numeric idenfiers of the available CCD readout modes. For each readout mode in
that dictionary, themode info description (i.e. the value in the dictionary) is also a dictionary structure:

mode_info = { "width": width,
"height": heigth,
"gain": gain,
"pixel_width": pixel_width,
"pixel_height": pixel_height }

wherewidth andheightare the frame dimensions (in pixels) corresponding to the binning of that particular readout
mode,gain the associated CCD gain (in electron/ADU), andpixel width, pixel heigththe physical pixel dimensions
on the CCD chip for that binning inµm.

With this structure, you may obtain whichever parameter you need for a given readout mode. For example, the CCD
width (in pixels) in the read out mode #3 is:

width = ccd_info["modes"][3]["width"]

8 Chapter 3. Overview

Read out parameters are useful to specify the CCD region you want to get during CCD read out (See 3.2).

3.3 Temperature control

In many SBIG cameras, a Peltier junction is available to cool down the CCD and thus diminish the thermal noise.
The following part of the script first activates the cooling system, then waits until the CCD temperature (here 15oC)
reaches the set point value. Once the target temperature is reached, the Peltier voltage will be modulated to keep the
CCD temperature stable.

When the temperature regulation is activated, a sudden change in the Peltier voltage may increase the noise if it
happens during a frame readout. Therefore, in order to minimize the readout noise, it is possible to automatically
“freeze” the temperature regulation process during each CCD readout (see line 51).

34 # Enable temperature regulation at 15 C
35 setpoint = 15.0
36 sbig.set_temperature_regulation(sbig.REGULATION_ON, setpoint_celsius=setpoint)
37
38 # Wait until the temperature reach the setpoint value (+/- 1 C)
39 while True:
40 temp_status = sbig.query_temperature_status()
41 print "ccd_celsius = ", temp_status[’ccd_celsius’]
42 print "setpoint = ", temp_status[’setpoint_celsius’]
43 if abs(temp_status[’ccd_celsius’] -
44 temp_status[’setpoint_celsius’]) < 1.0:
45 break
46 time.sleep(1)
47
48 # Regulation will be "frozen" during readout to minimize readout noise.
49 # (Freeze will start at the first readout_line command and stop
50 # when the end_readout command will be sent.)
51 sbig.set_temperature_regulation(sbig.REGULATION_ENABLE_AUTOFREEZE)

3.4 Exposure

After all these initialisation steps, it is time to take an image with the camera. Thestart exposure function will
opens the shutter for the specified duration. It may be needed to indicate which CCD you are using, as it may be the
main CCD of the camera or the guiding CCD (if the SBIG model you are using has one, of course).

Thestart exposure function returns immediatly after opening the shutter. Therefore you have to check yourself
if the exposure is finished or not, by using thequery command status which return the status of the last com-
mand sent to the camera. The status isSTATUS INTEGRATINGduring the exposure, andSTATUS COMPLETE
when the integration is achieved.

Once the exposure is done, a call to theend exposure is needed before proceeding with the readout.

52 sbig.start_exposure(ccd=sbig.CCD_IMAGING, exposure=10.0)
53
54 # Waiting until the end of the exposure (by checking status)
55 # sbig.query_command_status() gives status of the last command
56
57 while (sbig.query_command_status() == sbig.STATUS_INTEGRATING):
58 time.sleep(0.1)
59
60 # ending exposure (can also be used to end it prematurely)
61 sbig.end_exposure(ccd=sbig.CCD_IMAGING)

3.3. Temperature control 9

3.5 CCD frame readout

Once the exposure is done, it is time to read out the CCD to get the frame. Depending of the SBIG camera model,
several readout modes may be available, with different binning and therefore, different apparent CCD dimensions. For
a given mode, you may obtain the relevant information by usingget ccd info (See 3.2 and 4.2). The readout
process should be initiated by thestart readout function, it is necessary to specify the CCD you will use (the
main one or the guiding one), the readout mode and the dimension of the window you want to read. Then, you may
read the frame row by row withreadout line , or in one shot withreadout lines . These functions return
respectively a 1-dimensional and 2-dimensionalnumarray array. To prepare the camera for the next exposure, you
need to terminate the readout withend readout .

62 mode=0 # readout mode (binning 1x1 i.e. not binned)
63 fullheight = ccd_info[’modes’][mode][’height’]
64 fullwidth = ccd_info[’modes’][mode][’width’]
65 height=fullheight
66 width=fullwidth
67 top=0
68 left=0
69 sbig.start_readout(ccd=sbig.CCD_IMAGING, mode=mode,
70 top=top, left=left,
71 height=height, width=width)
72
73 # You may read row by row with readout_line(...),
74 # or a block with readout_lines(...)
75 # image is a numarray 2D-array.
76 image = sbig.readout_lines(ccd=sbig.CCD_IMAGING, mode=mode,
77 start=left, length=width, lines=height)
78 sbig.end_readout(ccd=sbig.CCD_IMAGING)

The parametersccd, mode, top, left, height, width, start, lengthandlinesshould keep coherent values through the call
to start readout and subsequent calls toreadout lines or readout line .

If you plan to read out a window instead of a full CCD frame, please read section 5.2 first, as the currentpysbig
version has some limitations.

3.6 Saving the frame as a FITS file

When the readout is achieved, you may do whatever postprocessing you want on the resulting frame stored as a
numarray array. If you would like to save it into a FITS file (FITS is the astronomical standard file format, see [7]),
you will need thepyfits extension to manipulate FITS files. Here is a way to do it:

79 filename = "out.fits"
80 fitsobj = pyfits.HDUList()
81 hdu = pyfits.PrimaryHDU()
82 # scale the data to Int16 with user specified bscale/bzero
83 # no other operation should manipulate the data after this
84 # hdu.data = image
85 hdu.data = image*1.0 # seems needed for the next operation
86 hdu.scale(’Int16’, ’’, bzero=32768)
87 fitsobj.append(hdu)
88 try:
89 os.unlink(filename)
90 except OSError:
91 pass
92 fitsobj.writeto(filename)

10 Chapter 3. Overview

You may notice that the data array has been scaled to signed integers. This is due to the fact that pixels in the frame
have values between 0 and 65535 (unsigned integer), but unsigned integer FITS image are not allowed by the FITS
standard [7]. The way to solve this is to scale the pixel values between -32768 and +32767, and to set the two FITS
keywordsBSCALE=1.0 andBZERO=32768. That way, any software reading the FITS file will use these keywords
to translate the pixel values stored into the original ones (See [7] and [6] for details).

3.7 End of the program

When you do not intend to use the SBIG driver anymore (typically at the end of a program), you need to close the
device, and to close the driver before the end of the Python script.

93 sbig.close_device()
94 sbig.close_driver()

3.8 Exceptions

The low level SBIG library returns error codes when an error occurs. In thepysbig Python extension, these error
codes have been replaced by the Python exception namedSBIGDriverError . This exception is raised each time the
low level SBIG driver returns an error; the associated exception message gives details about what happens. Depending
of what you want to do, you may catch these exceptions and manage the problem from within your code, or let the
exception reach the calling function.

3.7. End of the program 11

12

CHAPTER

FOUR

Functions

4.1 Initialisation and driver control

To initialise the driver and establish the link with the SBIG camera, a few operations are needed. The driver and the
camera device should be opened, and the communication established before any exposure can be taken. When the
CCD camera is no more in use (typically when the program ends), the device and the driver should be closed. A
typical program will do something like this:

>>> import sbig
>>> sbig.open_driver()
>>> sbig.open_device(sbig.DEV_USB)
>>> sbig.establish_link()
>>> ...
>>> ... # Taking many exposures
>>> ...
>>> sbig.close_device()
>>> sbig.close_driver()

The initialisation functions are described here, as well as a few other functions that may prove useful during the
initialisation.

open driver ()
open driver initialises the SBIG driver. It returnsNone. If the SBIG driver cannot be found on the system,
aSBIGDriverError exception will be raised.

close driver ()
close driver closes the SBIG driver. It returnsNone. If the SBIG driver has not been opened first (with
open driver), aSBIGDriverError exception will be raised.

open device (device=DEV USB, lpt base address=0x378 , ip address=0)
open driver initialises the SBIG driver. It returnsNone. If the SBIG driver cannot be found on the system,
aSBIGDriverError exception will be raised.

Thedeviceparameter should be one of the constants given in table 4.1.

Depending of the camera device (USB, LPT, Ethernet), some extra parameters may be needed: the I/O port
addresslpt base addressfor the parallel port (0x378 for LPT1, 0x278 for LPT2), or the IP addressip address
for the ethernet port.

If the device cannot be opened (no device, permission denied, etc.), aSBIGDriverError exception will be
raised.

close device ()
close device closes the opened camera device. It returnsNone. If the camera device has not been opened
first (with open device), aSBIGDriverError exception will be raised.

13

SBIG Constant device

DEV NONE No device

DEV LPT1 1st parallel port (LPT1)

DEV LPT2 2nd parallel port (LPT2)

DEV LPT3 3rd parallel port (LPT3)

DEV ETH Ethernet port

DEV USB1 1st USB port

DEV USB2 2nd USB port

DEV USB3 3rd USB port

DEV USB4 4th USB port

DEV USB Generic USB port

Table 4.1:SBIG device constants

establish link ()
Once the device has been opened, it is necessary to establish the connection with it, with the
establish link function. It returns a constant representing the camera model (for instance,
sbig.ST402 CAMERA=16for ST402-based cameras like the ST-1603ME one). If the link cannot be es-
tablished, aSBIGDriverError exception will be raised.

The current version of the SBIG library has a bug: theestablish link function can fail, and it may be
needed to call it several times to establish the connection with the device. A typical program may do something
like this:

tries=5
print "Establish the link with the camera..."
camera_type = sbig.NO_CAMERA
for i in xrange(tries):

try:
camera_type = sbig.establish_link()
break

except sbig.SBIGDriverError, msg:
print >>sys.stderr, msg, "Trying again..."
pass

if (camera_type == sbig.NO_CAMERA):
print >>sys.stderr, "Cannot establish link with the camera."
sys.exit(2)

get link status ()
get link status Returns the status of the link established with the camera. The returned object is a
dictionary with this structure:

status = { "established": linkEstablished,
"lpt_base_address": baseAddress,
"type": cameraType,
"total": comTotal,
"failed": comFailed }

wherelinkEstablishedis an integer which is 1 if the communication link is still established with the CCD camera,
and 0 otherwise;baseAddressis the memory address associated with the LPT port (if you are using the parallel
port, otherwise this parameter is meaningless);cameraTypeis the camera identifier (seeestablish link
above). The two last parameterscomTotalandcomFailedare the total number of communications with the
camera, and the number of failed communications respectively. These informations may help to identify a cable

14 Chapter 4. Functions

problem for instance.

query command status ()
query command status is used to monitor the status of the last command sent to the SBIG driver. The
status returned is one of the constants of table 4.2.

SBIG Status Constant Meaning

STATUS IDLE Camera ready

STATUS IN PROGRESS Last command is beeing executed

STATUS INTEGRATING Integration (exposure) in progress

STATUS COMPLETE Integration (exposure) achieved

Table 4.2:SBIG status constants

For instance,query command status is useful to check if an exposure is achieved or not (see 3.4 for an
example).

query usb ()
query usb queries the USB bus and detect up to 4 USB SBIG cameras. It returns a tuple: each element of the
tuple is a dictionary associated with the corresponding USB camera. The keys are’device’ for the camera
device (SeeDEV * constants in table 4.1),’serial’ for the serial number,’type’ for the camera model id
(See* CAMERAconstants), and’name’ for the model name.

>>> import sbig
>>> sbig.open_driver()
>>> devices = sbig.query_usb()
>>> print devices
({’device’: 32514, ’serial’: ’051100736’,

’type’: 16, ’name’: ’SBIG ST-1602 CCD Camera’},)
>>> print "%d USB camera(s) detected." % len(devices)
1 USB camera(s) detected.
>>> print "camera #0 name:", devices[0][’name’]
camera #0 name: SBIG ST-1602 CCD Camera
>>> print "camera #0 device:", devices[0][’device’]
camera #0 device: 32514
>>> print sbig.DEV_USB1
32514

There is a bug in the SBIG library: this function will return the correct tuple the first time you use it after you
turn the power on, and will always return an empty tuple() after.

Anyway, you may always call the functionopen device with deviceset to the generic USB device constant
DEV USB: the driver will open the first camera found on the USB bus. That way, a call to thequery usb
function is not needed. In fact this function is only useful if you have several USB cameras connected on the
same computer.

get driver handle ()

set driver handle (handle)
Functionsget driver handle and set driver handle are useful if you plan to manage several
SBIG cameras on various ports at the same time. If your program will only talk with one camera, you may
ignore these two functions.

For more details about these two functions, please see the SBIG library documentation [1].

get driver info (request=0)
get driver info returns the version and capabilities of the driver, as a dictionary. Keys are’version’
for the driver version, and’name’ for the driver name. Ifrequestis 0 (the default), the function returns

4.1. Initialisation and driver control 15

informations about the high level SBIG driver; ifrequestis set to1, data about the low level LPT or USB driver
are returned instead. See [1] for other requests.

>>> sbig.get_driver_info()
{’version’: ’04.43’, ’name’: ’libsbigudrv Ver 4.43-LINUX’,

’max_request’: 1}

4.2 Exposure and Readout

This section describe thepysbig functions needed to manage CCD exposure and readout. All these functions may be
used as well for the main CCD of the camera, for the internal tracking CCD (if the camera has one) or for an external
tracking CCD connected to the SBIG camera. When using one of these functions, the choice of the CCD is made
through theccd parameter, which can take 3 values:CCD IMAGING for the main imaging CCD,CCD TRACKING
for the internal tracking CCD, and constantCCDEXT TRACKING for an external tracking CCD.

When taking frames with the CCD, you need to start the exposure, wait, end it, initialise the readout by defining the
readout mode and the CCD area to be read, read the frame row by row or in one shot, and finally end the readout. A
typical program will do something like this:

>>> ...
>>> sbig.start_exposure(sbig.CCD_IMAGING, 10.0)
>>> time.sleep(10.0) # There is a better way to do this, see section 3.5
>>> sbig.end_exposure(sbig.CCD_IMAGING)
>>> sbig.start_readout(sbig.CCD_IMAGING, mode, top, left, height, width)
>>> image = sbig.readout_lines(sbig.CCD_IMAGING, mode,

start=left, length=width, lines=height)
>>> sbig.end_readout(sbig.CCD_IMAGING)
>>> ...

Each SBIG camera model has several readout modes, with different binning (1 × 1, 3 × 3, and so on). The available
modes may differ from one model to another. To know the available readout modes of your SBIG camera and the
corresponding CCD dimensions in each mode, see theget ccd info function below.

start exposure (ccd, exposure, antiblooming=ABG LOW7, shutter=SC OPEN SHUTTER)
start exposure initiates an exposure of durationexposurein seconds. The control is immediatly given
back to the caller. Therefore the caller has to check whether the exposure is achieved or not by using the
query command status function (see 4.1 and 3.4 for an example).

By default, the shutter will open at the beginning of the exposure and close at the end of the specified duration. If
you want a different shutter behavior (for biases or dark frames for instance), you can set theshutterparameter
to one of the values of table 4.3.

SBIG Shutter Constant Meaning

SC LEAVE SHUTTER Leave shutter alone

SC OPEN SHUTTER Open shutter for exposure and close for readout

SC CLOSE SHUTTER Close shutter during exposure and readout

Table 4.3:SBIG shutter constants

For details about “antiblooming”, please see [1].

end exposure (ccd)
end exposure has to be used when the exposure is complete in order to prepare the CCD for readout. It may
also be used to terminate the exposure prematurely.

16 Chapter 4. Functions

start readout (ccd, mode, top, left, height, width)
start readout initiates the CCD readout; it defines the area you intend to readout in subsequent
readout line or readout lines calls. The area is defined by thetop, left, heightandwidth param-
eters (see figure 4.1). These parameters should be compatible with the readout mode you chose (see function
get ccd info below).

top

left

height

width

Full CCD

Window

Figure 4.1:CCD Window readout parameters

readout line (ccd, mode, start, length)
readout line reads one row of the CCD. In a typical readout, thestart parameter should be equal to theleft
parameter used for the last call tostart readout , andlengthshould be equal towidth. readout line
returns a 1-dimensionalnumarray array of sizelength.

This function reads only one row of the area you defined. To read several rows, you need to repeat it (typically
heighttimes). You may also prefer to usereadout lines (see below).

readout lines (ccd, mode, start, length, lines)
readout lines reads several CCD rows at once. In a typical CCD readout,start should be equal to theleft
parameter used for the last call tostart readout , lengthshould be equal towidth, and if you want to read
the full area at once,linesshould be equal toheight. readout lines returns a 2-dimensionalnumarray
array of shape (length, lines). This array is perfectly suited to be saved into a FITS file with thepyfits
extension (See 3.6 for an example).

dump lines (ccd, mode, lines)
dump lines discards entire rows during readout. This function is useful to speed up the readout when doing
a partial CCD readout (window), by discarding the rows above the CCD area you would like to read.

end readout (ccd)
end readout prepares the CCD for idle state after readout. That way the CCD is ready for the next exposure.

get ccd info (request=CCD IMAGING)
Depending of therequestparameter,get ccd info may return different type of information about the cam-
era CCD (the imaging CCD or the tracking one).

4.2. Exposure and Readout 17

If requestis CCD IMAGING or CCD TRACKING, get ccd info returns details about the CCD, and a list
of all available readout modes. These informations are given as a dictionary with the following structure:

ccd_info = { "firmware": firmware,
"type": cameraType,
"name": cameraName,
"modes": modes = { mode_id: mode_info, mode_id: mode_info, ... } }

wherefirmware, cameraTypeandcameraNameare identifiers of the firmware and the camera model, andmodes
a dictionary where the keys are the numeric idenfiers of the available CCD readout modes. For each readout
mode in that dictionary, themode info description (i.e. the value in the dictionary) is also a dictionary structure:

mode_info = { "width": width,
"height": heigth,
"gain": gain,
"pixel_width": pixel_width,
"pixel_height": pixel_height }

wherewidth andheight are the frame dimensions (in pixels) corresponding to the binning of that particular
readout mode,gain the associated CCD gain (in electron/ADU), andpixel width, pixel heigth the physical
pixel dimensions on the CCD chip for that binning inµm.

With this data structure, you may obtain whichever parameter you need for a given readout mode. For example,
the CCD dimensions (in pixels) in the read out mode #0 are:

ccd_info = sbig.get_ccd_info()
mode=0 # readout mode (binning 1x1 i.e. not binned)
fullheight = ccd_info[’modes’][mode][’height’]
fullwidth = ccd_info[’modes’][mode][’width’]
gain = ccd_info[’modes’][mode][’gain’]

The requestparameter may also take other values to get very specific informations. See [1] and source file
‘sbig.c’ for details.

read offset (ccd)
read offset returns the CCD’s offset. The offset is adjusted at the factory and cannot be modified.

4.3 Temperature regulation

The commands in this section are used to control or monitor the CCD’s temperature regulation. SBIG parallel port
cameras have two temperature semsors, one for the CCD and the other for the ambient temperature; on USB based
SBIG cameras, only the CCD sensor is present, and reading the ambient temperature will always return 25oC.

query temperature status ()
query temperature status is useful to monitor the CCD’s temperature and the temperature regulation.
It returns a dictionary with the following structure:

status = { "enabled": enabled,
"frozen": frozen,
"setpoint_ad": setpoint_ad,
"setpoint_celsius": setpoint_celsius,
"ccd_ad": ccd_ad,
"ccd_celsius": ccd_celsius,
"ambient_ad": ambient_ad,
"ambient_celsius": ambient_celsius,
"power": power }

18 Chapter 4. Functions

In this structure,enabledis 1 if the temperature regulation is on and 0 otherwise;frozenis 1 if the regulation
will be automatically frozen during CCD readout (see below and in section 3.3 for an example) and 0 if not.
setpoint * is the CCD setpoint value,ccd * is the measured CCD temperature, andambient * the ambient
temperature (meaningless for USB based cameras). For these 3 last parameters,* celsiusis the corresponding
value in celsius, and* ad the same value expressed in internal A/D units. For more details about the A/D
conversion see [1].poweris the electric power applied to the cooler, expressed in the range 0–255.

set temperature regulation (regulation, setpointcelsius, setpointad, power)
set temperature regulation is used to enable or disable the CCD temperature regulation, and to set
the associated parameters, like the temperature set point or the cooler power.

If regulation is REGULATIONON, the cooler is activated, and the regulation will start if it is not already
started. You need to provide the CCD temperature setpoint, either in Celsius (by specifying thesetpoint celsius
parameter) or in internal A/D units (with thesetpoint ad parameter). If you do not provide one of these two
parameters, aValueError exception will be raised.

If regulationis REGULATIONOFF, the cooler is turned off.

If regulationis REGULATIONFREEZE, the regulation will be frozen.

If regulationis REGULATIONUNFREEZE, the regulation will be unfrozen.

If regulation is REGULATIONENABLE AUTOFREEZE, the regulation will be automatically frozen during
each CCD readout, to avoid changes of the cooler power which may increase the readout noise during readout.
The regulation will be unfrozen after each readout.

If regulationis REGULATIONDISABLE AUTOFREEZE, the automatic regulation freeze during readout will
be disabled.

If regulationis REGULATIONOVERRIDE, you can override the temperature regulation process and set your-
self the cooler power with thepowerparameter. Thepowershould be in the range 0–255. If you do not provide
thepowerparameter, aValueError exception will be raised.

4.4 Control parameters

get driver control (parameter)

set driver control (parameter, value)
These two functions are useful to get or modify the internal control parameters of the SBIG driver. Some driver
options may be enabled or disabled that way. Be careful when modifying one of the driver control parameters
as this may produce unexpected results. The available control parameters are listed in table 4.4.

SBIG Control Parameter Meaning Default

DCP USB FIFO ENABLE Enable FIFO for USB cameras True

DCP CALL JOURNAL ENABLE Broadcast driver API calls (debug) False

DCP IVTOH RATIO Dump row speed (do not modify) 5

DCP USB FIFO SIZE Size of the USB FIFO 16384

DCP USB DRIVER (unknown)

DCP KAI RELGAIN (unknown)

DCP USB PIXEL DL ENABLE Enable downloading of pixels data (debug)True

DCP HIGH THROUGHPUT Enable fastest transfer (high noise) False

DCP VDD OPTIMIZED Lower CCD voltage for short exposures True

DCP AUTO AD GAIN Autoset of A/D gain is USB cameras True

Table 4.4:SBIG control parameter constants

For more details please refer to [1].

4.4. Control parameters 19

4.5 External devices: filter wheel, mirror tip-tilt, etc.

On some SBIG cameras, it is possible to control external devices, like the tip-tilt of a secondary mirror for instance.
Some SBIG models also include a filter wheel. The library distributed by SBIG includes specific functions to control
these associated components. For the moment, the corresponding functions have not not yet been implemented in
pysbig . They will be added in future versions.

20 Chapter 4. Functions

CHAPTER

FIVE

Issues

5.1 Array support

The current version of thepysbig module is usingnumarray arrays to store the CCD data obtained during a
readout [4]. Thereadout line function returns a 1Dnumarray array, whilereadout lines returns a 2D
numarray array.

The Python array support is evolving quite fast, and it is scheduled in the near future to phase out the two conflicting
array packagesNumeric andnumarray , to replace them by a unified array module,numpy [5]. For the moment
(September 2006), thenumpy module is not mature enough, and important packages likepyfits (FITS file support,
see [6]) are still based uponnumarray . It is why we chose to write thepysbig module with anumarray interface.
However, it will soon be needed to replace thenumarray interface by itsnumpy equivalent, to follow the evolution
of the Python language. As the authors ofpyfits also plan to switch their modules tonumpy, thepysbig module
will need to be updated whenpyfits will be, to keep compatibility.1

5.2 Known bugs

Here are some known bugs:

• query usb will returns the list of the cameras found on the USB bus only once. After it will always return an
empty tuple (See 4.1). A power off seems to be needed to get again the correct tuple.

• The window readout procedure described in [1] does not work and will produceRX Timeout errors. The data
will also be corrupted. Even if you plan to do a window readout, use the parameters for a full CCD readout, and
always read the entire rows. To speed up the readout you may just dump the rows at the top of your window
with dump lines before usingreadout lines . It is not necessary to read or dump the remaining rows at
the bottom. Please refer to the ‘readout-window.py’ sample code to see how to readout a CCD window.

5.3 Not implemented

The functions of the section 3.4 of [1] related to the control of external devices (external relay, AO tip tilt, filter wheel)
have not yet been implemented. A few other features are also missing.

1The authors ofpyfits are planning to keep some backward compatibility withnumarray for a while, so updating thepysbig module will
not be so urgent. But it should be done, as the backward compatibility will not be kept for long.

21

22

Appendix

23

BIBLIOGRAPHY

[1] Santa Barbara Instrument Group, January 11, 2005, “SBIG Universal Driver/Library”

[2] Le Guillou L., HERMES-WP-430-04, 2006, “SBIG CCD camera: Linux driver setup”.

[3] Guido van Rossum, Python Software Foundation, 29 March 2006, Release 2.4.3,
“Extending and Embedding the Python Interpreter”,
http://docs.python.org/ext/ext.html

[4] Perry Greenfieldet al., Space Telescope Science Institute,
Release 1.5, “numarray User’s Manual”, chapter 14: “C extension API”,
http://www.stsci.edu/resources/software hardware/numarray

[5] “Numpy: Numerical Python”,http://sourceforge.net/projects/numpy/

[6] Space Telescope Science Institute, July 2005, “PyFITS User’s Manual”
http://www.stsci.edu/resources/software hardware/pyfits

[7] IAU FITS Working Group, December 9, 2005, FITS Standard, Version 2.1b,
“Definition of the Flexible Image Transport System (FITS)”,
http://fits.gsfc.nasa.gov/iaufwg/

25

26

INDEX

close device() (in module sbig), 13
close driver() (in module sbig), 13

dump lines() (in module sbig), 17

end exposure() (in module sbig), 16
end readout() (in module sbig), 17
environment variables

LD LIBRARY PATH, 6
PYTHONPATH, 6

establish link() (in module sbig), 14

get ccd info() (in module sbig), 17
get driver control() (in module sbig), 19
get driver handle() (in module sbig), 15
get driver info() (in module sbig), 15
get link status() (in module sbig), 14

LD LIBRARY PATH, 6

open device() (in module sbig), 13
open driver() (in module sbig), 13

PYTHONPATH, 6

query command status() (in module sbig), 15
query temperature status() (in module

sbig), 18
query usb() (in module sbig), 15

read offset() (in module sbig), 18
readout line() (in module sbig), 17
readout lines() (in module sbig), 17

sbig (extension module),1
set driver control() (in module sbig), 19
set driver handle() (in module sbig), 15
set temperature regulation() (in module

sbig), 19
start exposure() (in module sbig), 16
start readout() (in module sbig), 17

window readout, 21

27

