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Relative to a clock at rest on the Earth’s surface, the
time recorded by an tdeal clock after a circumnaviga-
tion of the Earth depends mot only on the speed and
altitude but also on the direction of the circumnavigation
and on the rotational speed of the Earth. Such o clock
may run either fast or slow, depending on the direction
and ground speed for the circumnavigation. This direc-
tional dependence should be perceptible with commercial
Jet speeds and cestum beam clocks.

I. INTRODUCTION AND STATEMENT
OF THE PROBLEM

In a recent letter in Nature,! I briefly developed
a prediction of the theory of relativity that
states that the relativistic time offset accumulated
by a clock during circumnavigation of the Earth
depends both on the direction of the circum-
navigation and on the Earth’s rotational speed.
This rather straightforward prediction of the
theory seems to have been largely overlooked in
the past. Moreover the magnitude of the expected
time offset is enhanced by the Earth’s surface
speed to the point where it should be perceptible
with ordinary international jet speeds and
modern atomic clocks. Consequently, I suggested
an experimental test of this prediction of a direc-
tional dependence. The purpose of this paper is to
present a more detailed description of these
relativistic effects and to discuss more fully their
implications.

Our objective, therefore, is to predict the out-
come of the following idealized, but in principle
executable experiment. T'wo similar clocks initially
are Jocated together at rest on the Earth’s surface

at the equator. They are carefully tested and
intercompared to assure that they keep the same
time, i.e., that they record the same number of
“ticks” over long time intervals. Then one of the
clocks is placed in a jet airplane that rapidly
climbs to its cruising altitude, flies completely
around the Earth in the equatorial plane at this
cruising altitude and with a constant ground speed
with no stops, and then rapidly descends to the
departure point where the other clock remained
at “rest.”” The question to be considered is the
following: If the two clocks read the same time
before the flight, what will be their relative time
readings after the flight? It will be assumed the
clocks record proper time.

Notice that this question does not ask about
Doppler shifts or other instantaneous effects
between the two clocks. No signals are trans-
mitted between the clocks during the flight.

II. THEORY

Almost all caleulations in relativity begin with
an assumed prior knowledge of the space—time
metrie. It will be a sufficiently accurate approxi-
mation to assume that the Earth is a spherically
symmetric source of scalar gravitational potential
x, and that the Earth rotates on its axis once a day
in an otherwise flat space. The choice of a metric
for a mnonrotating space greatly simplifies the
calculation; metrics for rotating spaces always
involve cross terms between the infinitesimal
coordinate space and time intervals, and in this
case time synchronization for the hypothetical
coordinate clocks is intransitive, which induces a
certain arbitrariness in the meaning of time.? The
nonrotating metric for the region outside a
spherically symmetric source of gravitational
potential is the Schwarzschild metric3:

s (14 2) e
c?
- [L —I—r2(d02-1—sin20d¢2)}. (1
14+ (2x/c?)
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In this expression the coordinate time interval dt
and the corresponding coordinate space intervals
dr, rdf, and r sinfd¢ are the coordinate intervals
between two infinitesimally close space—time
events, such as two close points in the path of a
physical clock. Since the proper time interval dr,
recorded by such a moving clock during corre-
sponding coordinate time and space intervals, is
ds/e, Eq. (1) gives

o [p2)

w! o) A"
(o torew)a] w0 @

where

W =ututug’

= (dr2/de?) +r2[ (d6*/dt?) + (sin0de?/de?) ],

which is the square of the coordinate speed. At
this point it is convenient to reduce Eq. (2) for a
slow speed (u2<c?) and weak field (|x |K¢c?)
approximation:

dre=[1+(x/c?) — (w?/2¢*) Jdt, (3)
where terms of order higher than 42/c? and x/c?
have been neglected.

If a clock follows a certain definite path in
space, P, beginning at a point 4 at the coordinate
time ¢4 and ending at a point B at the coordinate
time ¢, the finite proper time interval recorded by
that clock is given by the line integral of dr along
the path P:

AT=Tp—T4 »
r®»1

(S

tA

The implication here is that the scalar potential x
and the coordinate speed u are definite known
quantities at each instant of coordinate time ¢
along the path P. Now let us apply these results
to the case in question, viz., clocks circum-
navigating the Earth at the equator.
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Figure 1 suggests a view of the Earth as
perceived by a nonrotating observer looking down
on the North pole from a great distance. The
“stationary’’ reference clock at rest on the surface
follows a circular path as the Earth turns on its
axis. Let the radius of the Earth be R and its
angular speed be Q. Then the coordinate speed
for this clock is up= B2, and the scalar potential is
xo=—GM /R, where G is the gravitational con-
stant and M is the Earth’s mass. Application of
Eq. (4) gives the proper time interval recorded
by the stationary clock:

‘80 GM R
= 1 —
Ao -/ ( R 2¢? ) dt

t4g

=[1—(GM/R) — (R**/2¢*) Ak, (5)

where Af, is the corresponding coordinate time
interval.

A similar caleulation gives the proper time
recorded by the flying clock. Let us neglect the
small differences in recorded times during the
brief ascent to and descent from the cruising
altitude. Assume the flying clock follows a
circular path around the Earth at an altitude A
above the surface and with a constant ground
speed », which is positive for eastward and nega-
tive for westward motion (see Fig. 1). The

flying clock —Yest__

+h>ﬂ u=(R+nQ +v O\

“stationary”
clock
,53' & u, = R
@ R+h
R

\

Fig. 1. Coordinate speeds in a nonrotating space for a
clock at rest on the Farth’s surface at the equator and an
airborne clock circumnavigating the Earth in the equa-
torial plane.



relativistic law for the addition of velocities gives
the correct coordinate speed for the flying clock:

_ (R¥hotv
CAIrRID @/

The denominator in this case contributes only to
higher orders that have already been neglected,
so the approximation u= (R-+h)Q-+v is sufficient.
Hence application of Eq. (4) to the flying clock
gives:

s GM
Ar= /M <1" @R (1+h/R)
B [RQ(1+h/R)+v]2) i
2¢?
_<1 e
“\"" @R(1+h/R)
[RQ(1+h/R) +vT
- o )a ©

where the scalar potential in this case is
=—GM/(R+h)

and the corresponding coordinate time interval
is At.

The paths that the two clocks follow in this
experiment are different, but since they both
begin and end at the same spacetime points, the
coordinate time intervals for both are the same,
i.e., At=Af,. Hence division of Eq. (6) by Eq. (5)
gives the ratio of the recorded proper time
intervals, independently of the common coordinate
time interval:

I GM _ [RQ(1+h/R)y+v ]
Ar ¢R(1+h/R) 2c?
Aty L GM R
AR 2¢?
(7

This expression, which can be simplified con-
siderably, gives the desired relationship between
the recorded times. A little algebraic manipula-
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tion, assuming h<<CR and retaining only lowest
order terms, produces the result stated in Ref. 1:

Ar/Arg=14{(gh/c?) — (2RQv+1?) /2¢%, (8)

where ¢=GM/R?*—RQ?, the measured surface
value of the aceeleration of gravity at the equator.

Let us define a quantity 8 to be the difference in
the times recorded by the flying and reference
clocks divided by the time of the reference clock:

0= (AT— ATo) /AT().

A rearrangement of Eq. (8) gives the predicted
value for §:

8= (gh/c®) — (2RQ+v)v/2c% 9)
Let us call § the time offset between the two
clocks, (It may also be appropriate to regard &
as the difference in rates for the clocks, but the
notion of rate has too many preconceived and
misleading connotations.?) Notice that the offset
defined here is a unique (invariant) quantity
that is quite independent of the frame of reference
of an observer who measures it. Moreover, 6 is a
negative quantity if the flying clock “runs” slow,
while it is positive if the flying clock “runs” fast.
Equation (9) predicts that the flying clock may
run fast or slow, depending on the direction of the
circumnavigation (the sign of »).

Cutler has derived a more general relation for
the expected offset for clocks that circumnavigate
the Earth at any latitude,® not just at the equator.
If X is the latitude (A=0 at the equator), Eq. (9)
becomes:

di=(gh/c*) —[(2RQ cosh+v)v/2¢%].

Hence the directional dependence of the offset is
reduced at higher latitudes in proportion to cosh.

II1I. DISCUSSION AND CONCLUSIONS

The effect of altitude [h in Eq. (9)] on the
time-keeping behavior of terrestrial clocks is
associated with the gravitational red shift and is
rather well understood. It predicts that a clock
in a stronger gravitational field (A small) records
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less time than a similar clock in a weaker gravita-
tional field (% large). .

A quite remarkable feature of Eq. (9) however
is the prediection of & directional dependence on the
ground speed. Let us consider for illustration a
few examples with A=0, a case that would be
difficult to achieve in practice but that tends to
simplify our thought experiments. Suppose the
circumnavigation is westward with a ground speed
v=—RQ. In this case the flying clock ‘“‘stands
still” in the nonrotating reference space while
the clock on the ground traverses a circular path
in one day. The predicted offset is:

S =R20%/2¢,

with the ground clock running slow, which means
the flying clock would appear to run fast.

Now suppose the ecircumnavigation is still
westward but with a ground speed v=—2RQ.
The predicted offset is zero, which upon reflection
is not surprising because in this case the two
clocks move with the same coordinate speed in
the same circle but in opposite directions.

As a final example, suppose the flying clock
circumnavigates the Earth in an eastward direc-
tion. In this case v is positive and the flying clock
always has a coordinate speed that is greater
than the clock on the ground. Consequently the
flying elock runs slow, regardless of the magnitude
of the ground speed.

At high ground speeds, where | v >>RQ so that
Su2gh/ct—v*/2¢®, the directional dependence
becomes imperceptible and the flying clock runs
slow for either direction. This case would apply to
a clock in an Earth satellite with a low orbit
(h&R).

Probably the most interesting result of this
study is the prediction that the offsets that can
be expected with typical commercial international
jet speeds are about an order of magnitude
greater than the inherent rms fluctuations between
cesium beam clocks.” The offsets are measurable
with ordinary jet speeds because the relatively
large surface speed of the Earth (2RQ=930
m/sec=22000 mph) plays a-dominant role. Typical
international jet flights go at'an altitude A=10
km2233 000 ft and a ground speed » =300 m/sec=
670 mph. With these values Eq. (9) predicts
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offsets of 6(west) =-+2.1X10722 for a westward
circumnavigation and §(east) =—1.0X10"2 for
an eastward circumnavigation. Since the inherent
rms fluctuations? for portable cesium beam clocks
8 (noise)=<10-"3, which is an order of magnitude
less than the predicted offsets, the expected signal
to noise ratio is favorable and an experimental
test of this directional dependence seems quite
feasible. At the same time such an experiment
would test the conventional interpretation of the
theory, which prediets that maecroscopic physical
clocks run slow when moving relative to a non-
rotating space. In other words such a test would
provide an empirical resolution of the famous
clock paradox with maeroscopic physical clocks.

The assumption here, as is common in relativity
theory, has been that all macroscopic physical
clocks, irrespective of design or complexity,
record proper time (assuming of course that their
time keeping is not influenced by drift, damage,
misalignment, failure, or other impairment of the
constituent mechanisms). This hypothesis of the
theory,® which seems quite firmly based ultimately
on the principle of relativity and the principle
of equivalence, nevertheless has yet to be estab-
lished by observation. That it can be so estab-
lished is now within our grasp.

APPENDIX

An anonymous referee has suggested that I
point out that the east-west directional de-
pendence described here is a purely special
relativistic effect, in spite of the apparent use of
the general theory. Although this statement is
true insofar as the directional dependence alone is
concerned, it is certainly not true to suggest that
the general theory is not required to predict
offsets for terrestrial circumnavigations. Since
differences in the gravitational field are involved,
the special theory is inadequate.

It is interesting, nevertheless, to derive a
predicted offset based solely on the special theory.
The basis for proper time in this case is the
Minkowski metric, which applies in a nonrotating
(inertial) reference system. The infinitesimal
proper time interval; analogous to Eq. (3) of the
text,'is given by

dr =[1— (u2/2¢2) Jdt. (A.1)



To draw an analogy as close as possible to the
terrestrial situation, one might imagine circum-
navigation by clocks of a thin rotating spherical
shell of negligible mass, of radius B and angular
speed @, and located in interstellar (flat) space
where x = constant. Following a derivation identi-
cal to that of the main text, but employing
Eq. (A.1) for infinitesimal proper time intervals,
the predicted offset to the same order of ap-
proximation becomes

8r = —[2RQ*h+ (2RQ+0)v]/2¢2 (A.2)
Hence the directional dependence follows from a
purely special relativistic argument, but of course
it would be quite incorrect to use this expression
to prediet offsets for terrestrial circumnavigations
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(with ~20). Although it is similar to Eq. (A.2),
Eq. (9) includes the effect of the gravitational red
shift, which results from a general relativistic
metric and would be nonnegligible in an actual
experiment. In fact an experiment employing
macroscopic clocks, similar to the one suggested
here, would not only test the clock hypothesis
(clocks record proper time), but would also test
the equivalence principle of general relativity
through its dependence on altitude. Therefore, to
state that the effect is purely special relativistic
could be misleading,.
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