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Most geometric representations of the Lorentz transformation use either imaginary angles
or imaginary space-time coordinates. A new and simple representation is proposed using only
real coordinates and real angles, and allowing a graphical illustration of the major features of

the Lorentz transformation.

VER since Poincare and Minkowski intro-
duced the four-dimensional space-time
formalism, numerous graphical representations of
the Lorentz transformation have been proposed
which illustrate the physical meaning of the
transformation. They are exposed in most
treatises on relativity, in particular, in those of
Becker, Born, and Mboller. The illustrative
merit of this representation is somehow weakened
by one or more of the following features:
imaginary time (or space) coordinates; imaginary
angle of rotation; units of length (and of time)
changing from an axis to another and determined
by the intersection of the axes with a family of
hyperbolas. We propose here a geometric
representation which uses only real coordinates,
real angles, and where the units of length (and
of time) are the same in both systems. The two
sets of coordinates of an event appear as co-
variant and contravariant variables. This feature
which is not essential to the graphical represen-
tation can be brought up as a useful background
for the study of general relativity.
We start out with a brief mathematical
introduction.

MATHEMATICAL INTRODUCTION

Cousider the two axes ou’, ox’ such that angle
(x’ou’)=y of Fig. 1. The coordinate lines
x' =const, #’ =const are parallel to the coordinate
axes and the coordinates (%',x’) of a point P
are obtained by drawing from P parallels to
ox’, ou’. The slope s’ of a line AH joining two
points 4, H is equal to the ratio Q’'H/AQ' as
shown in Fig. 1, s'=Q'H/AQ.

Drawing ox perpendicular to ox’ and ou
perpendicular to ox’ we have a new set of oblique
axes with an angle (xo#) =7 —y. The coordinates
%, x of a point P with respect to the new axes
are obtained in the same manner as for #'x’ and
they are shown in Fig. 1. Again the slope of
line AH is given by

s=QH/4Q.

The relationship between the two sets of
coordinates is given by

1
x=——(x"'4u' cosy),
siny

(1a)

sin

1
=——0(x' cosy+u').
¥
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F16. 1. Graphical representation of four-dimensional,
space-time coordinate system.

The inverse transformation is

%' =——(x—1u cosy),
siny
) (1b)
#' =——(—x cosy+u).
siny

The proof of these transformations is straight-
forward and we shall derive only the second
one as an example. Figure 1 shows that OB
=0A+0B=u'+x' cosy and that

u=0C=0B/siny,
and this establishes the first Eq. (1a). One may
remark that Eqs. (1a) and (1b) can be deduced
from each other by interchanging the primes
and changing cosy to (—cosy), i.e., ¥ to (wr—y).

The relationship between the values of the
slope of a curve (at a given point) can be obtained
by differentiating Eqgs. (1a) and finding their
ratios. The result is

dx’
—+cosy
dx du'
————— e, {2)
du dx
1+cosp—
du’

One can also derive this relation geometrically
using for a curve tangent to AH at A
dx’

' AQ

?

AMAR

Upon setting (x,u)= (x'x?) and (x'u’) = (x'x?)
one recognizes that this is the simplest example
of covariant and contravariant coordinates i.e.,

xP=gYx; x;=gix

The metric tensors g*, g;; are given in Egs.
&ij

(1a) (1b).

APPLICATION TO THE LORENTZ
TRANSFORMATION

In special relativity the space-time coordinates
(x,2) of an event in an inertial system are related
to the coordinates (x’,t') of the same event in
another inertial system by the so-called Lorentz
transformation. The second system S’ is moving
with a constant velocity v with respect to the
first system .S, v being directed in the common
axis direction x (or x’). If one sets u=ct, ' =ct’,
B=v/cand y = (1~pa%)~* the Lorentz transforma-
tion can be written y=9', z=35" (if these axes are,
respectively, parallel)

x =" (x'+Bu), (3a)
u="x(Bu'+u).
The inverse transformation is then

W=y (—Bx+u).

With the time coordinates %, %', 8 is the relative
velocity of the two systems and all velocities will
be measured in c-units, the velocity of light in
vacuum being one. The second postulate of
special relativity requires all velocities be less
than one. One verifies easily that relations
(3a,b) are identical with relations (la,b) when
one sets

v/c=8=cosy and therefore, vy=1/siny.

4)

With this interpretation of Egs. (1a,b) one can
then proceed to study graphically the simple but
important consequences of the Lorentz
transformation,

The rigorous measurement of the length of a
rod in a given system consists in recording the
positions at the same instant of the ends of the
rod. Thus let a rod 4 B of length I’ lying along the
x’-axis be at rest in .S (Fig. 2). The world lines
of the ends are, respectively, 44" and BB’. In
order to record their simultaneous positions one
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draws a parallel to the x-axis in S and a parallel
to the x'-axis in §’. The length is found to be
A'B'=l in 8 and A”"B"=] in S, ! being less
than /' as Fig. 2 shows. Exactly:

1/y=sing=l/I' or I=V(1-pgH%

Thus a moving rod appears shorter to a
stationary observer. Consider now a clock fixed
in §’ and sending two light-flashes at times
u¢’, up’. The world line of the clock is CD and
according to S events C, D occurred at times
#e, up. Figure 2 readily shows that

up' —ue’
1/y=sing=———,
Up—Uc
or
up' —ue'= (up—uc)(1—FHL

A moving clock runs slower if compared to that
of a stationary observer. These relationships are
of course entirely reciprocal.

Figure 2 shows also that events 4'B’ simul-
taneous in S’ occur at different times in S; C, D
coincident in S’ occur at different locations in .S.

The velocity transformation can be derived
analytically or graphically. Equation (2) can be

- i'+B
= )
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Fig, 2, Lorentz transformation between
inertial reference systems.
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F1c. 3, Example of a particle traveling at a speed
in excess of the speed of light.

written
#+8
g= .
14-8%'

where £=dx/cdt, and &' =dx’/cdt’ =dx’/du’.

The propagation of a flash of light starting at
the origin at time u=u"=0 is described by OL,
and one can easily show that the slope of OL is
unity in both systems. The world line of any
material particle must have at all times a slope
less than one. The world line of the origin of
system S’ is ou’.

Assume that a particle leaves the common
origin of S, §’ at time w=4'=0 with a speed
larger than that of light. The particle collides
with a particle stationary at S at point xp.
From our assumption the slope of the world line
OF is larger than that of OL, i.e.,

Then the collision F would take place at a
negative time uy' <0, i.e., the collision would
occur before the particle has left the origin
(Fig. 3)! This example shows how essential is the
second postulate of special relativity.



