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A certain man walks very fast—so fast that the relativistic length contraction makes him
very thin. In the street he has to pass over a grid. A man standing at the grid fully expects
the fast thin man to fall into the grid. Yet to the fast man the grid is much narrower even
than to the stationary man, and he certainly does not expect to fall in. Which is correct? The

answer hinges on the relativity of rigidity.

OME two or three years ago I proposed to
colleagues at Cornell a simple paradox on
relativistic length contraction which I had
already proposed several years earlier to students
at London University. It seemed the kind of
paradox that must occur to anyone concerned
with the subject, but I failed to find it mentioned
in the literature. At a recent professional meeting
it still aroused some interest, and I therefore of-
fer it now.

A 10-in. long “rigid”’ rod moves longitudinally
over a flat table. In its path is a hole 10 in. wide.
Suppose the rod moves so fast that its Lorentz
contraction factor is 10. To an observer B
moving with the rod the hole is only 1 in. wide,
and the rod, being ‘‘rigid,” might be expected
to pass unhindered over the hole. To an observer
A at rest relative to the table, however, it is the
rod that is only 1 in. long; in passing over the
10-in. hole it is bound to fall somewhat under
gravity, and it will consequently strike the far
edge of the hole and so be stopped. Which
description is correct?

The resolution of the paradox has already been
hinted at by setting the word rigid in quotation
marks. There is no doubt that 4’s description of
events is correct. The rod simply cannot remain
rigid in B's inertial frame (see Fig. 1). This
illustrates well the difficulties encountered in
the search for a satisfactory definition of rigidity
in relativity.

Before proving our assertion, let us make the
experiment more concrete. The hole shall be
filled with a trap door which will be removed
(downward, and with sufficient acceleration to
allow the rod to fall ireely) by the observer A
at the instant when to him the hind end of the
rod passes into the hole. This precaution elimi-

nates the tendency of the rod to topple over the
edge. All points of the rod will then fall equally
fast, and the rod will remain horizontal, in the
frame of 4. The gravitational field can be re-
placed by a magnetic field acting on an iron rod,
or even by a uniform vertical sand blast from
above, if it be held that special relativity is in-
applicable to gravitation. It must be stressed,
however, that special relativity is perfectly ap-
plicable to accelerated bodies: what it cannot do
is cope with nonflat space times.

Now let it be understood that the rod is
originally a rectangular parallelepiped and that
the observer B uses an internal frame fixed to
the hind end of the rod. Call this frame .5’, call
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Fie. 1. (a) Sequence of four observations made by 4
at equal intervals of time £ (b) Observation made by B
at one particular instant #. (For convenience these dia-
gram)s are drawn for the case y=4, not y=10 as in the
text.
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~A’s frame S, and let their relative velocity be
2. Take as common origin event a front-bottom
corner Q of the rod at the instant when the trap
door separates from Q, measure 2, 2’ down from
the top of the table, and x, %’ along the initial
path of Q. Then the standard Lorentz transfor-
mation equations

z=g', t=vy({t'+w'/c), y=1-2*/)"F (1)
apply to S and §'. The equations of the bottom
edge of the rod in S are '
2=0 when ¢<0, 2z=2%a? when £20, (2)
where a is the acceleration produced by the field
or sandblast. (A uniform field in relativity will
only approximately produce uniform accelera-
tion, but the small error is quite irrelevant here.)

By use of (1), we can immediately transform.

Egs. (2) into
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z’=0 when x'<—c%'/v,
7 =%ay?({' +ovx'/c?)? when &' 2% /v. (3)

The interpretation of Egs. (3) is as follows. In
S’, imagine a parabola with vertex at Q, axis
vertically down, and latus rectum 2¢*/av%? The
vertex of this parabola moves along the rod with
velocity ¢2/v starting at t'=0; and the rod, as
it passes over that vertex, “flows” down the
parabola. Its horizontal extent clearly remains
constant until it hits the far edge of the hole.
It can easily be shown that the near edge of the
hole at time ¢’ is at x'= —L/vy*—ut’, where L is
the rest length of the rod. Consequently, this
edge, moving with velocity v along the rod, leads
the vertex of the parabola and is overtaken by
the latter exactly at ¥’ = —L, i.e., at the hind end
of the rod. A sizable compression of the rod
must eventually occur in S’ because, as can be
seen from the description in .S, the hind end of
the rod passes well into the hole.

ORINS Summer Symposium

The eighth summer symposium of the Oak Ridge Institute of Nuclear Studies will be held
August 28-30, 1961, in Gatlinburg, Tennessee. This year’s topic will be the university use of

subcritical assemblies.

Cosponsoring the symposium are the education committee of the American Nuclear Society,
Oak Ridge National Laboratory, and the U. S. Atomic Energy Commission. )

Leading representatives of universities, industry, and government will discuss the various
types of subcritical assemblies, the techniques of their use, their applications in university
research and education programs, and other facets of obtaining and operating subcritical as-

semblies on university campuses.

Further information about the meeting is available from the Symposium Office, University
Relations Division, Oak Ridge Institute of Nuclear Studies, P. O. Box 117, Oak Ridge,

Tennessee.



