

Licence de Physique

Relativité Restreinte : Résumé de Cours (5)

Parcours SPRINT & Double Majeure – Année Universitaire 2024–2025 Intervenants : L. Le Guillou & J. Bolmont (Sorbonne Université / LPNHE)

Loi relativiste de composition des vitesses — concept de rapidité — additivité des rapidités

1. Composition des vitesses

Dans le cadre relativiste, si un événement M se produit aux coordonnées $(ct, x, y, z) = (ct, \mathbf{r})$ dans un référentiel galiléen (ou inertiel) \mathcal{R} , on peut obtenir les coordonnées $(ct', x', y', z') = (ct', \mathbf{r}')$ du même événement M dans un autre référentiel galiléen \mathcal{R}' en appliquant la transformation de Lorentz (avec $\mathbf{v} = \mathbf{v}(\mathcal{R}'/\mathcal{R}) = v\,\mathbf{e}_x$):

$$\begin{cases}
ct' &= \gamma (ct - \beta x) \\
x' &= \gamma (x - \beta ct) \\
y' &= y \\
z' &= z
\end{cases}$$

Si on considère deux événements successifs correspondants aux deux positions successives d'un mobile dans l'espace-temps, séparés par $(c\,\mathrm{d}t,\mathrm{d}x,\mathrm{d}y,\mathrm{d}z)=(c\,\mathrm{d}t,\mathrm{d}\mathbf{r})$ dans \mathcal{R} , et par $(c\,\mathrm{d}t',\mathrm{d}x',\mathrm{d}y',\mathrm{d}z')=(c\,\mathrm{d}t',\mathrm{d}r')$ dans \mathcal{R}' , on aura, en utilisant ce qui précède :

$$\begin{cases} c \, dt' &= \gamma (c \, dt - \beta dx) \\ dx' &= \gamma (dx - \beta c \, dt) \\ dy' &= dy \\ dz' &= dz \end{cases}$$

De ces équations, on peut dériver la relation entre la vitesse instantanée $\mathbf{u} = \mathrm{d}\mathbf{r}/\mathrm{d}t$ de ce mobile dans le référentiel \mathcal{R} , et la vitesse instantanée $\mathbf{u'} = \mathrm{d}\mathbf{r'}/\mathrm{d}t'$ du même objet dans le référentiel \mathcal{R}' :

$$\begin{cases} u'_{x} &= \frac{\mathrm{d}x'}{\mathrm{d}t'} &= \frac{u_{x} - v}{1 - \frac{vu_{x}}{c^{2}}} \\ u'_{y} &= \frac{\mathrm{d}y'}{\mathrm{d}t'} &= \frac{1}{\gamma} \frac{u_{y}}{1 - \frac{vu_{x}}{c^{2}}} \\ u'_{z} &= \frac{\mathrm{d}z'}{\mathrm{d}t'} &= \frac{1}{\gamma} \frac{u_{z}}{1 - \frac{vu_{x}}{c^{2}}} \end{cases} \text{ et réciproquement}$$

$$\begin{cases} u_{x} &= \frac{\mathrm{d}x}{\mathrm{d}t} &= \frac{u'_{x} + v}{1 + \frac{vu'_{x}}{c^{2}}} \\ u_{y} &= \frac{\mathrm{d}y}{\mathrm{d}t} &= \frac{1}{\gamma} \frac{u'_{y}}{1 + \frac{vu'_{x}}{c^{2}}} \\ u_{z} &= \frac{\mathrm{d}z}{\mathrm{d}t} &= \frac{1}{\gamma} \frac{u'_{z}}{1 + \frac{vu'_{x}}{c^{2}}} \end{cases}$$

Ce qui constitue la loi relativiste de composition des vitesses entre deux référentiels galiléens. Il apparaît clairement que :

(i) Lorsque la vitesse relative v entre les référentiels est petite devant celle de la lumière (i.e. quand $\beta \ll 1$), et si $u_x \ll c$, on retrouve la loi classique de composition des vitesses :

$$u'_x = \frac{u_x - v}{1 - \frac{vu_x}{c^2}} \xrightarrow{\beta \ll 1} u_x - v \qquad u'_y = \frac{1}{\gamma} \frac{u_y}{1 - \frac{vu_x}{c^2}} \xrightarrow{\beta \ll 1} u_y \qquad u'_z = \frac{1}{\gamma} \frac{u_z}{1 - \frac{vu_x}{c^2}} \xrightarrow{\beta \ll 1} u_z.$$

- (ii) Les composantes transverses u_y et u_z de la vitesse ne sont pas invariantes par changement de référentiel (contrairement à ce qu'on obtient avec la loi galiléenne de composition des vitesses).
- (iii) Le vecteur vitesse ne se transforme pas comme le vecteur position selon les équations des transformations de Lorentz (on définira plus tard le *quadrivecteur vitesse* qui se comportera "mieux").

De plus, la forme obtenue pour la loi de composition des vitesses assure que, si $u_x' \le c$ et v < c, alors on aura aussi $u_x \le c$: si un mobile se déplace à une vitesse inférieure à celle de la lumière dans un référentiel galiléen, sa vitesse sera inférieure à c dans tous les autres référentiels galiléens. De même, on peut montrer que si un mobile se déplace à la vitesse de la lumière dans un référentiel inertiel, il se déplace à la vitesse de la lumière dans tous les autres référentiels inertiels (ce qui est cohérent, car c'est l'un des deux postulats de départ pour construire la relativité restreinte).

2. Rapidité

Plutôt que la vitesse, on utilise parfois en relativité restreinte une grandeur liée à la vitesse que l'on nomme "rapidité". La rapidité φ du référentiel \mathcal{R}' par rapport au référentiel \mathcal{R} est une grandeur physique sans dimension, définie par :

$$\beta = \frac{v}{c} = \tanh \varphi = \tanh \varphi$$
 $\varphi = \operatorname{argtanh} \beta = \operatorname{argtanh} \beta = \operatorname{argtanh} \frac{v}{c} = \operatorname{argth} \frac{v}{c}$

On peut aussi définir la rapidité d'un objet à partir de sa vitesse, de la même manière. La rapidité est une grandeur additive lors d'un changement de référentiel, ce qui simplifie notamment le traitement des mouvements accélérés.

On a les relations suivantes, très pratiques :

$$\beta = \tanh \varphi = \tanh \varphi$$
 $\gamma = \cosh \varphi = \cosh \varphi$ $\beta \gamma = \sinh \varphi = \sinh \varphi$

Ainsi, en utilisant la rapidité φ du référentiel \mathcal{R}' par rapport au référentiel \mathcal{R} , la transformation de Lorentz prend une forme élégante :

$$\begin{pmatrix} ct' \\ x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \operatorname{ch} \varphi & -\operatorname{sh} \varphi & 0 & 0 \\ -\operatorname{sh} \varphi & \operatorname{ch} \varphi & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} ct \\ x \\ y \\ z \end{pmatrix} \qquad \text{et} \qquad \begin{pmatrix} ct \\ x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \operatorname{ch} \varphi & \operatorname{sh} \varphi & 0 & 0 \\ \operatorname{sh} \varphi & \operatorname{ch} \varphi & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} ct' \\ x' \\ y' \\ z' \end{pmatrix}.$$

Bibliographie

- **D. Langlois**, *Introduction à la relativité*, Vuibert (2011) : chapitre 2.
- M. Boratav & R. Kerner, Relativité, Ellipses (1991): chapitre 3.