Nom:

PRÉNOM:

Nº ÉTUDIANT:

LICENCE DE PHYSIQUE — RELATIVITÉ RESTREINTE

INTERROGATION ÉCRITE

Parcours SPRINT & Double Majeure PM — Année Universitaire 2024–2025 Interrogation n°1 : durée 15 minutes

Documents, ordinateurs, tablettes et téléphones sont interdits. Les calculatrices (basiques) sont autorisées.

[Total : 10 pts]

1. Mécanique dans un train en mouvement

Vous traiterez cet exercice dans le cadre de la mécanique classique.

On raisonnera dans le référentiel local terrestre \mathcal{R} , qu'on supposera galiléen/inertiel. On munit \mathcal{R} d'une origine arbitraire O et d'un trièdre direct $\{\mathbf{e}_x, \mathbf{e}_y, \mathbf{e}_z\}$, où le vecteur \mathbf{e}_z est orienté selon la verticale locale, et \mathbf{e}_x , \mathbf{e}_y sont dans le plan horizontal.

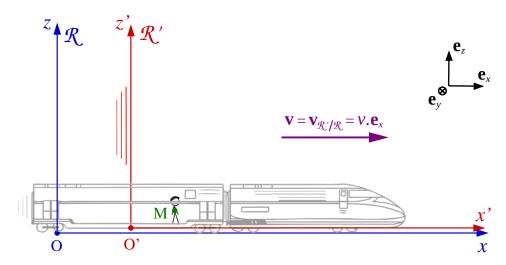


FIGURE 1 – Référentiels du sol et du TGV.

Un train à grande vitesse (TGV) se déplace en ligne droite à la vitesse $v=288\,\mathrm{km}\cdot\mathrm{h}^{-1}$. On considère le référentiel du train, que l'on note \mathcal{R}' ; on munit ce référentiel d'une origine arbitraire O', et du même trièdre $\{\mathbf{e}_x,\mathbf{e}_y,\mathbf{e}_z\}$ que précédemment. On choisit l'orientation de \mathbf{e}_x dans la direction du mouvement du train : la vitesse relative $\mathbf{v}_{\mathcal{R}'/\mathcal{R}}$ s'écrit ainsi $\mathbf{v}_{\mathcal{R}'/\mathcal{R}}=v\,\mathbf{e}_x$. On prendra l'origine du temps t à l'instant où les origines O et O' coïncident (figure 1).

On considère un passager de centre de gravité M dont on analyse le mouvement dans les deux référentiels, celui du sol et celui du train. On repère à chaque instant la position de M dans \mathcal{R} par

	te vecteur position $\mathbf{r}(t) = \mathbf{OM}(t) : (x, y, z)$, et par le vecteur position $\mathbf{r'}(t) = \mathbf{O'M}(t) : (x', y', z')$ dans $\mathcal{R'}$.
ot	1.1 — Le référentiel du train est-il galiléen/inertiel?
	1.2 — Rappelez l'expression de la transformation de Galilée entre \mathcal{R} et \mathcal{R}' : donnez l'expression sous forme vectorielle; puis donnez les expressions des coordonnées (x',y',z') du mobile dans le référentiel du train en fonction de ses coordonnées (x,y,z) dans le référentiel local terrestre.
	1.3 — Rappelez la loi classique de composition des vitesses entre les référentiels \mathcal{R} et \mathcal{R}' . On notera respectivement $\mathbf{u}(t): (u_x = \mathrm{d}x/\mathrm{d}t, u_y = \mathrm{d}y/\mathrm{d}t, u_z = \mathrm{d}z/\mathrm{d}t)$ la vitesse du mobile M dans \mathcal{R} , et $\mathbf{u}'(t): (u_x' = \mathrm{d}x'/\mathrm{d}t, u_y' = \mathrm{d}y'/\mathrm{d}t, u_z' = \mathrm{d}z'/\mathrm{d}t)$ sa vitesse dans \mathcal{R}' . Donnez la loi de composition des vitesses sous forme vectorielle, puis en composantes.

1 pt 1.4 — Un passager du train se déplace à $1 \, \mathrm{m \cdot s^{-1}}$ le long du train, depuis la motrice vers la queue du train. Donnez l'expression de sa vitesse dans les deux référentiels (vous donnerez toutes les composantes). Application numérique pour u_x' et u_x (attention aux unités).

Freinage du train

En raison du signalement d'un objet sur la voie, le TGV freine. On suppose qu'il décélère avec une accélération constante négative $\mathbf{a}_{O'/\mathcal{R}} = a_x \, \mathbf{e}_x$ avec $a_x = -1 \, \mathbf{m} \cdot \mathbf{s}^{-2}$.

0.5 pt 1.5 — Le référentiel du TGV est-il toujours galiléen? Justifiez.

À l'approche des fêtes, la voiture-bar du TGV a été décorée : une boule de Noël a été accrochée avec un fil au plafond de la voiture-bar, au centre du wagon (fig. 2).

1 pt 1.6 — Pendant la phase de freinage du train, représentez la boule de Noël, le fil qui la retient au plafond, et l'ensemble des forces (et éventuelles pseudo-forces inertielles) qui s'exercent sur la boule de Noël dans le référentiel \mathcal{R}' du train.

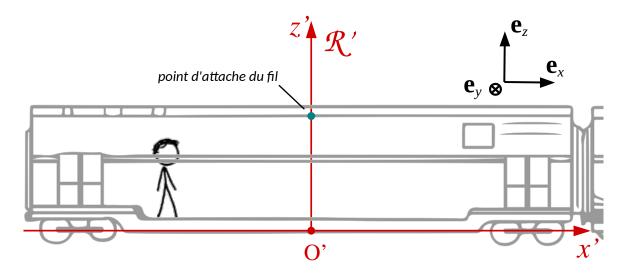


FIGURE 2 – Voiture-bar du TGV. Représentez la boule de Noël suspendue au plafond lorsque le TGV freine, le fil qui la retient et toutes les forces et éventuelles pseudo-forces inertielles qui s'exercent sur la boule dans \mathcal{R}' .

2 pts 1.7 — Que vaut l'angle du fil avec la verticale pendant le freinage du train?



Arrivée du train dans un virage

Après avoir repris sa vitesse de croisière ($288 \, \mathrm{km} \cdot \mathrm{h}^{-1}$), le TGV arrive dans une section courbe de la voie ferrée (virage). Dans le virage, le TGV maintient sa vitesse de $288 \, \mathrm{km} \cdot \mathrm{h}^{-1}$ par rapport aux rails, mais sa trajectoire est désormais circulaire.

1 pt 1.8 — Sur la figure 3 ci-dessous, représentez les pseudo-forces inertielles qu'un objet immobile M subit dans le référentiel \mathcal{R}' du train lorsque le train parcourt la partie courbe de la voie ferrée.

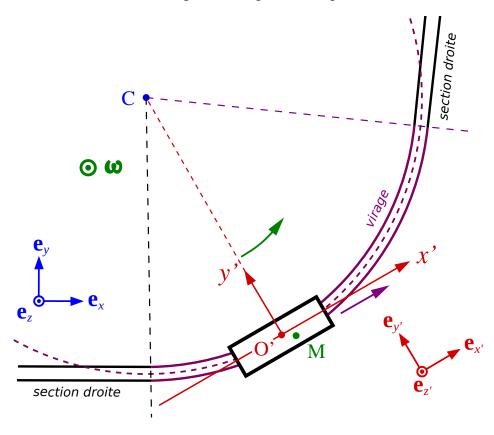


FIGURE 3 – Le TGV circule dans une section courbe de la voie ferrée. Représentez les pseudo-forces inertielles qui s'exercent sur l'objet M, qu'on suppose immobile (la boule de Noël suspendue par son fil par exemple).

Rappels : transformation de la vitesse et de l'accélération entre un référentiel $\mathcal R$ galiléen et un référentiel $\mathcal R'$ non-galiléen. Généralisation de la deuxième loi de Newton (RFD). Pseudo-forces inertielles. Soient deux référentiels : un premier référentiel $\mathcal R$, galiléen (ou inertiel), et un second référentiel $\mathcal R'$, animé d'un mouvement quelconque par rapport à $\mathcal R$ et par conséquent non galiléen. On appelle O et O' les origines choisies dans les référentiels $\mathcal R$ et $\mathcal R'$, respectivement. De plus, on note $\omega_{\mathcal R'/\mathcal R}$ le vecteur vitesse angulaire instantané de rotation du référentiel $\mathcal R'$ par rapport au référentiel $\mathcal R$.

Considérons un point matériel M en mouvement quelconque, dont la position à chaque instant dans les référentiels \mathcal{R} et \mathcal{R}' est repérée par les vecteurs positions $\mathbf{r}(t) = \mathbf{OM}(t)$ et $\mathbf{r}'(t) = \mathbf{O}'\mathbf{M}(t)$ respectivement.

Si on note $\mathbf{u}(t)$ la vitesse instantanée de M mesurée dans le référentiel \mathcal{R} , et $\mathbf{u}'(t)$ sa vitesse instantanée mesurée cette fois dans \mathcal{R}' , ces deux vitesses se déduisent l'une de l'autre par la relation :

$$\mathbf{u}(t) = \left(\frac{\mathrm{d}\mathbf{O}\mathbf{M}}{\mathrm{d}t}\right)_{\mathcal{R}} = \left(\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}\right)_{\mathcal{R}} \quad \mathbf{u}'(t) = \left(\frac{\mathrm{d}\mathbf{O'}\mathbf{M}}{\mathrm{d}t}\right)_{\mathcal{R}'} = \left(\frac{\mathrm{d}\mathbf{r}'}{\mathrm{d}t}\right)_{\mathcal{R}'}$$
$$\mathbf{u}(t) = \mathbf{v}_{O'/\mathcal{R}} + \mathbf{u}'(t) + \boldsymbol{\omega}_{\mathcal{R}'/\mathcal{R}} \times \mathbf{O'}\mathbf{M}.$$

Si on note $\mathbf{a}(t)$ l'accélération de M dans le référentiel \mathcal{R} , et $\mathbf{a}'(t)$ son accélération dans \mathcal{R}' , on aura, en dérivant la relation précédente (et en utilisant la relation de Varignon),

$$\mathbf{a}(t) = \left(\frac{\mathrm{d}^2 \mathbf{O} \mathbf{M}}{\mathrm{d}t^2}\right)_{\mathcal{R}} \qquad \mathbf{a}'(t) = \left(\frac{\mathrm{d}^2 \mathbf{O}' \mathbf{M}}{\mathrm{d}t^2}\right)_{\mathcal{R}'} \qquad \mathbf{a}(t) = \mathbf{a}'(t) + \mathbf{a}_e + \mathbf{a}_c$$

où les termes d'accélération supplémentaires sont *l'accélération d'entraînement* a_e et *l'accélération de Coriolis* a_c qui s'écrivent respectivement :

$$\mathbf{a}_{e} = \mathbf{a}_{e/\mathcal{R}} = \mathbf{a}(O'/\mathcal{R}) + \boldsymbol{\omega}_{\mathcal{R}'/\mathcal{R}} \times (\boldsymbol{\omega}_{\mathcal{R}'/\mathcal{R}} \times \mathbf{O'M}) + \frac{\mathrm{d}\boldsymbol{\omega}_{\mathcal{R}'/\mathcal{R}}}{\mathrm{d}t} \times \mathbf{O'M}$$
 et $\mathbf{a}_{c} = 2 \boldsymbol{\omega}_{\mathcal{R}'/\mathcal{R}} \times \mathbf{u'}$

Si on considère un mobile M de masse m dans le référentiel non galiléen \mathcal{R}' , la deuxième loi de Newton (RFD) se généralise sous la forme :

$$m\mathbf{a}' = \sum \mathbf{F}_{\text{ext}} - m\,\mathbf{a}_{\text{e}} - m\,\mathbf{a}_{\text{c}} = \sum \mathbf{F}_{\text{ext}} + \mathbf{F}_{\text{e}} + \mathbf{F}_{\text{c}}$$

avec $\mathbf{F}_{e} = -m \, \mathbf{a}_{e}$ la force inertielle d'entraînement et $\mathbf{F}_{c} = -m \, \mathbf{a}_{c}$ la force inertielle de Coriolis.

Double produit vectoriel. Une relation utile, notamment en physique, est la formule du double produit vectoriel : si **A**, **B** et **C** sont trois vecteurs quelconques, alors :

$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = (\mathbf{A} \cdot \mathbf{C}) \ \mathbf{B} - (\mathbf{A} \cdot \mathbf{B}) \ \mathbf{C}.$$