

Cosmology

Master NPAC

Lesson 1 (Introductory lesson) : History and Observational facts Measuring distances in the Universe Universe dynamics What is the Universe made of ?

Laurent Le Guillou

2016-11-07

Laurent Le Guillou UPMC (Paris-6) / IN2P3 – LPNHE

Pierre Astier IN2P3 – LPNHE

Danièle Steer Université D. Diderot / IN2P3 – APC Laurent Le Guillou, llg@lpnhe.in2p3.fr Jussieu campus, 1213-1-12. Observational cosmology team, LPNHE, Paris (14 faculty/CNRS, 4 postdocs, 3 PhD students) Cosmology with SNIa, BAO, instrumentation, calibration.

Research: Instrumentation for Cosmology (LSST), Instrumental Calibration (DICE), SN observations, Baryonic Acoustic Oscillations (DESI)

LSST, 8.4-m, 9.6 deg² Chile, Cerro Pachon First light ~ 2022 20000 deg², 1000 visits in 10 y

Scales of certain physical processes, imprinted on the CMB, survive to the late-time universe and can be see in the clustering signal of galaxy positions

DESI (Mayall), 4-m, 3.2 deg² Arizona, US, Kitt Peak (KPNO)

Contents

- 1.1 A (brief) History of Cosmology
- 1.2 Measuring Cosmological Distances
- 1.3 Dynamics of the Universe
- 1.4 Contents of the Universe
- 1.5 A first sketch of the Big Bang model

1.1

A (brief) history of Cosmology

Worldviews across the ages Origins of Modern Cosmology

Egyptian Cosmology

Duat of Osiris

Celestial spheres Eudoxus of Cnidus (IV century B.C.).

Schema huius præmiffæ diuifionis Sphærarum.

Sphere of fixed stars

Ancient Greece (Ptolemy)

The Sphere of the « fixed » stars...

Retrograde movement of Mars

Copernician revolution Nicolaus Copernicus (1473 – 1543), J. Kepler, ...

The Solar System

7 planets + Uranus (Herschel, 1781) + Neptune (Galle/Le Verrier 1846) + Pluton (1930)

Olbers paradox J. Kepler (1610), H. Olbers (1823), ...

641 C (1)

Why is the night sky dark ?

In an infinite and static universe, the sky should be as bright as the sun surface

Our « galaxy »

W. Herschel suggests (1781) from star counts that the shape of the « universe » may be lenticular.

First hints about our own galaxy, and extra galactic objects (« nebulae »).

Our position in the Galaxy H. Shapley (1885 – 1972) From the distribution of the globular clusters (distances from RR Lyrae / cepheids)

The Great debate (1920) H. Shapley (1885 – 1972) – H. Curtis (1872 – 1942)

Are the fuzzy faint « nebulae » extra galactic objects ? Are they « island-universes » similar to our own ? (Shapley)

Or are they objects close to us ? Does the « galaxy » constitute the entire Universe ? (Curtis)

Mid-1920s \rightarrow Hubble measured the distance to M31 using Cepheids

Conclusion : the Universe is much bigger !

Classification of the galaxies E. Hubble, M. Humason

Hubble's law

Redshift z :

$$\lambda_{\rm obs} = \lambda_{\rm emit}(1+z)$$

 $z = \frac{\lambda_{\rm obs}}{\lambda_{\rm emit}} - 1$

« Doppler » effect :

$$\frac{\lambda_{\text{obs}}}{\lambda_{\text{emit}}} = \sqrt{\frac{1+\beta}{1-\beta}} \simeq 1+\beta$$
$$z \simeq \beta \qquad v \simeq cz$$

Galaxy in the constellation

Virgo

Ursa Major

Corona Borealis

Bootes

Hydra

approximate distance/ 10^6 ly

55

700

1000

2000

3000

redshift

0.004

0.050

0.073

0.203

The Universe is expanding ! E. Hubble, G. Lemaître, A. Friedmann, ...

The point of view is the same for any galaxy : no center

Isotropy and homogeneity at large scale

Typical age of the Universe : *Hubble time* :

 $t_0 = 1/H_0$

Hubble initial value was much too high :

 $H_0 \simeq 500 \,\mathrm{km/s/Mpc} \qquad t_0 \simeq 2 \,\mathrm{Gy}$

Expanding Universe : The Universe should have been more compact and warmer in the past.

One answer to Olbers' paradox : the age of the Universe is finite

Alternative theories (« Every good story needs a villain »)

F. Zwicky (1898 – 1974)

Theory of the *« tired light »* to explain redshift from far away objects

Prediction of neutrons stars, discoverer of many supernovae.

Original mind, hard to work with...

F. Hoyle (1915 – 2001)

First papers on nucleosynthesis in stars. Predicted the triple alpha reactions.

Strong detractor of the « Big Bang » theory. Alternative theory of matter creation to compensate expansion (« *steady state* »).

Cosmic Microwave Background (CMB) A. A. Penzias & R. W. Wilson (1965)

Black Body spectrum (microwave)

T ~ 2.73 K (BB spectrum up to 10^{-5})

Predicted by the « hot Big Bang » model

Hot Universe in the Past

Black body spectrum emitted at the time of last ionizations (decoupling of photons and matter)

T ~ 2.73 K implies a redshift of ~1100

Cosmic Microwave Background (CMB)

Cosmic Microwave Background (CMB)

1.2

How do we measure distances in such a big Universe ?

To do Cosmology we often need to measure distances to objects sitting very far away...

The « Cosmic ladder »
Stellar parallax

 $1 \text{ pc} = 3.26 \text{ ly} = 3.09 \times 10^{16} \text{ m}$

Stellar parallax

- Only nearby stars (19-20th century)
 ~ 1000 stars, up to ~100 pc
- Hipparcos (1989-1993)
 ~ 100 000 stars, 0.001 arcsec,

distances up to ~500 pc

• GAIA (2013-)

3D catalog of ~ 10^9 stars reliable distances up to ~10 kpc

Stellar parallax

Stellar properties

Stellar spectrum : a black body \rightarrow T° + emission/absorption lines

Spectral classification : OBAFGKM

Temperature, Color and Luminosity

Stellar apparent magnitude (in filters) (ref = ref star, Vega) :

$$m_x - m_{x,\mathrm{ref}} = -2.5 \log_{10} \left(\frac{I_x}{I_{x,\mathrm{ref}}} \right)$$

Absolute magnitude M : magnitude of the same object seen at 10 pc Distance modulus μ :

$$m - M = \mu = 5\log_{10}\left(\frac{u}{10\,\mathrm{p}}\right)$$

Stellar properties

Absolute Mag. Temp° & color

Stellar classes

Stellar Evolution

H-R diagram can be build for stars at the same distance (clusters)

Hertzsprung-Russell Diagram Effective Temperature, K 10,000 7,000 4.000 6,000 O

Stellar evolution

Variable stars

« Standard candles »

Objects with a known absolute luminosity

Distance modulus and distance may be deduced

RR Lyrae

Pulsating variables $P \sim 0.1 - 1$ day

Period-luminosity relation Abs Mag ~ +0.75

Distance indicator inside the galaxy / local group

Cepheids : pulsating stars

Cepheids : luminosity-distance relation

 $M_v = (-2.43 \pm 0.12)(\log_{10}(P) - 1) - (4.05 \pm 0.02)$

Cepheids

Hertzsprung-Russell Diagram

Light echoes

Light echoes

Tully-Fisher (spiral galaxies) R. Tully & J. Fisher (1977)

Relation between the rotation velocity of a galaxy (deduced from the width of its emission lines) and its absolute magnitude

By comparing with the apparent magnitude, gives the distance modulus

Similar relations for elliptical galaxies (Faber-Jackson, Fundamental plane)

Tully-Fisher

Type Ia supernovae : standard candle

White dwarf accreting mass from its partner Chandrasekhar limit ~ 1.39 solar mass

Degenerate matter (electron pressure)

Very bright : ~ $10^{11} L_{\odot}$ around max.

Giant

White dwarf

Type Ia supernovae : standard candle

SNIa = standard candles

Raises in a few weeks, decreases in a few months

« Standardization » : Correlation of the peak luminosity with the decay (« stretch ») and the color.

Distance estimator up to $z\sim1$ and beyond.

Cosmic distance ladder

A Cartoon of the Distance Ladder

1.3

Dynamics of the Universe

How a simple (and wrong) Newtonian description may (partly) capture the Universe dynamics

A very simple (and wrong) model

Newtonian dynamics

$$\begin{aligned} R_s &= r_s \, a(t) \\ \ddot{a} &= -\frac{4\pi G\rho(t)}{3} \, a(t) \\ \left(\frac{\dot{a}}{a}\right)^2 &= \frac{8\pi G\rho(t)}{3} + \frac{2C}{r_s^2 a^2(t)} \end{aligned}$$

If C > 0: expansion will never stop.

If C < 0 : expansion stops at $a_{max}^2 = -GM_S/Cr_s$ Followed by contraction

C = 0 : limit case (expand forever but $\dot{a} \rightarrow 0$)

Analogy with the dynamic of a ball bouncing on Earth

From Newton to General Relativity

k = -1, +1, 0 $R(t) = a(t)R_0$

If k = -1 (C > 0) : negative curvature expansion will never stop.

If k = +1 (C < 0) : positive curvature expansion stops, contraction follows

If k = 0 (C = 0) : flat universe (limit case)

[GR, dynamics...]

[Curvature, General Relativity...]

Friedmann Equation

$$H^{2}(t) = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G}{3}\rho - \frac{kc^{2}}{R_{0}^{2}a^{2}}$$
$$H^{2}(t) = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G}{3c^{2}}\varepsilon - \frac{kc^{2}}{R_{0}^{2}a^{2}}$$

$$-\frac{kc^2}{R_0^2 a^2(t)H^2(t)} = 1 - \frac{\rho(t)}{\rho_c(t)} = 1 - \Omega(t)$$
$$\Omega(t) = \frac{\rho(t)}{\rho_c(t)} = \frac{\varepsilon(t)}{\varepsilon_c(t)}$$

$$\Omega_k(t) = -\frac{kc^2}{R_0^2 a^2(t) H^2(t)} = 1 - \Omega(t)$$

Fluid equation

Adiabatic expansion : $\delta Q = dU + pdV = 0$ i.e. dS = 0

Fluid equation :

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3c^2}(\varepsilon + 3p)$$

Friedmann equations :

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3c^2}\varepsilon - \frac{kc^2}{R_0^2 a^2}$$
$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3c^2}(\varepsilon + 3p)$$
$$\dot{\varepsilon} + 3\frac{\dot{a}}{a}(\varepsilon + p) = 0$$

Needed : equation of state : $p = w\varepsilon = w\rho/c$

Equations of state

Non-relativistic matter : $p_m \ll \varepsilon_m = \rho_m/c^2$ $w_m \simeq 0$

Light, relativistic matter (photons, neutrinos, ...) :

$$p_r = \frac{\varepsilon_r}{3} \qquad w_r = \frac{1}{3}$$

Density evolution with time :

$$\dot{\varepsilon} + 3\frac{\dot{a}}{a}(\varepsilon + p) = 0$$
 $\varepsilon(t) = \varepsilon(t_0)a(t)^{-3(1+w)}$

$$\varepsilon_m(t) = \varepsilon_m(t_0)/a(t)^3$$

 $\varepsilon_r(t) = \varepsilon_r(t_0)/a(t)^4$

Eras ! Light era, matter era, ...

[Dynamics, Thermal history...]

Friedmann Equations

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3c^2}\varepsilon - \frac{kc^2}{R_0^2a^2}$$

$$\dot{\varepsilon} + 3\frac{\dot{a}}{a}(\varepsilon + p) = 0$$

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3c^2}(\varepsilon + 3p)$$

Describe an evolving, non static Universe (scale factor a(t))

Einstein \rightarrow How to stabilise it to get a static Universe ?

Friedmann Equations (with Λ)

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3c^2}\varepsilon - \frac{kc^2}{R_0^2a^2} + \frac{\Lambda c^2}{3}$$
$$\dot{a}$$

$$\dot{\varepsilon} + 3\frac{a}{a}(\varepsilon + p) = 0$$

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3c^2}(\varepsilon + 3p) + \frac{\Lambda c^2}{3}$$

$$\Lambda = \frac{8\pi G}{c^4} \varepsilon_{\Lambda} = \frac{8\pi G}{c^2} \rho_{\Lambda} \qquad p_{\Lambda} = -\rho_{\Lambda} c^2 \qquad w_{\Lambda} = -1$$
$$\Omega_{\Lambda} = \frac{\rho_{\Lambda}}{\rho_c}$$

Universe driven by its contents

« Cosmological constant » : $\Lambda = \frac{8\pi G}{c^4} \varepsilon_{\Lambda} = \frac{8\pi G}{c^2} \rho_{\Lambda}$

Exotic fields...

[Universe Dynamics...]
1.4

Contents of the Universe

The dynamics of the Universe is driven by its contents.

So, what is the Universe made of?

Stars

Typical luminosity in a few hundreds Mpc :

$$j_{\star,B} \simeq 1.2 \times 10^8 L_{\odot,B} / \mathrm{Mpc}^3$$

In the vicinity of the Sun (1kpc) :

$$< M/L_B > \simeq 4M_{\odot}/L_{\odot,B}$$

If typical,

 $\rho_{\star,0} = j_{\star,B} * < M/L_B \simeq 5 \times 10^8 M_{\odot}/\mathrm{Mpc}^3$

 $\Omega_{\star} \simeq 0.003 - 0.004$

Gas (HI, H₂, ...) HI: 21 cm line (radio)

 $\Omega_{\rm HI} \simeq 3 \times 10^{-4}$ $\Omega_{\rm H2} \simeq 2 \times 10^{-4}$

Spiral Galaxy Messier 81

NASA Spitzer Space Telescope and NRAO VLA

Baryonic matter : primordial nucleosynthesis

⁽CMB : Planck, 2014)

Galaxies : rotation curves

Galaxies : rotation curves

$$\Omega_{\rm gal} \simeq 0.04$$
 to 0.16

Dark matter halo !

Galaxy Clusters

 $\label{eq:Virialized objects} \begin{array}{ll} V+2T=0\\ \\ \frac{1}{2}M < v^2 > = \frac{\alpha}{2}\frac{GM^2}{r_h} \end{array}$

Mass may be deduced from velocity dispersion :

$$M = \frac{\langle v^2 \rangle r_h}{\alpha G}$$

Hot X-ray emitting gas under hydrostatic equilibrium

$$\Omega_{\rm clusters} \simeq 0.2$$

« Dark » matter again !

Type Ia Supernovae and Dark Energy

Expansion is accelerating!

Best model :

$$\Omega_m \simeq 0.3$$
 $\Omega_\Lambda \simeq 0.7$

The cosmological constant is back!

May be seen as an dark energy with

$$p = w\rho = w\epsilon/c^2$$

$$w = -1$$
 $p = -\rho$

Supernovae and Dark Energy

Betoule et al., 2014

Concordance Model

1(

A strange Universe...

TODAY

A short history of the Universe

Dark Energy Accelerated Expansion

