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1. Distance, metrics and curvature

In a reference frame where the coordinates are x : z*, the distance ds between two points separated
by dz* is:
ds? = g datdz”

Where g,,,, is the metric tensor.
If the space is curved, you cannot cancel all the second derivatives of g,,, relatively to the coordinates.

The connection coefficients (Christoffel symbols) describe the effects of parallel transport in curved
space:

1 1 0w

FVMP = 5 (gMva — 9puw t gVP#) Pzp = igyg (gua,p — Gpp,o t+ gap,u) where Guv,p = apg;w = 0P
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To take properly into account the effects of parallel transport in a curved space, the derivative should
be replaced by the covariant derivative,
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The curvature may be expressed through the Riemann curvature tensor:
le% _ o «@ a o o o
Rsy5 = Tssy = Ty + Toyliss = Tosl sy
and with the Ricci tensor R,,, and the Ricci scalar R{:

R, =R Ry = g"" Ry

Qo

In such a curved space, free particles follow the geodesics, defined by:

Dp* . dz* Dg*  dg* dz”
- = th K == e _— = — F:u‘ v_—
Dr 0 wi P m dr Ds ds thupd ds

this provides the trajectories of free particles along the geodesics:

d2zH dx? dx”
+ 1 _
dr2? YPdr dr

2. General Relativity: Einstein’s equation

The Einstein field equations link the curvature of spacetime, described with the Ricci curvature tensor
R,,,, to the contents in matter and energy through the stress-energy tensor 7),,:

1 8rG
R;w - iRgg/u/ - Ag,uz/ = CTT,U,V

This may also be written using the Einstein’s tensor G ..,

1
iRgguu

G = Ry —
And the field equation then becomes:

8rG

G,u,l/ - Ag;w = ?Tm/

Dimensions: [R,,] = [G,] = [A] =L72; [T,,,] = ML™'T72; [G] = M~ 1L3T2,

3. The Friedman-Lemaitre-Robertson-Walker metric

As the universe is considered to be homogeneous and isotropic, its metric should be the most symet-
ric solution of the Einstein equation, with a uniform curvature. This metric is the Friedman-Lemafitre-
Robertson-Walker (FLRW) metric:

siny k=41
ds® = Adt* — R*(t) (dx® + Si(x) (d6? + sin® 0 dyp?)) Sk(x) =1 x k=0
sinhy k=-1
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With the following comoving coordinates x : z* = (ct, x, 0, ¢).

In this equation, R(t) is the universe scale factor ([R(t)] = L). a(t) = R(t)/R(to) is the dimensionless
scale factor, with the convention a(tg) = 1 at current time .

The metric may also be written:
ds* = dt* — Rga®(t) (dx® + Sp(x) (d6” + sin® 0 dy?))
Or, if we define r = Si(x),

dr?
1 — kr2

ds? = ?dt* — R3a%(t) ( + 7% (d6? + sin? ¢ dg02)>

3.1. FLRW metric

To get a properly dimensioned metric tensor, we may also use the coordinates: X : 2# = (29, 2!, 22, 23) =

(ct, Ror, Ro#, Roy). The metric then becomes:
R%er
1—kr?

ds® = g dotda” = *dt? — a®(t) < + 7% (R3d6? + sin? GR(Q)dQDQ))

The metric and the inverse metric are diagonal, and the metric coefficients are:

1
goo
2 2
a“(t 1 1—kr
g1 ——1<k)2 gt ==
— kr g1 a?(t)
1 1
2(4Y,.2 22
= —a?(t — - -
922 a*(t)r 9 oz a2(t)r2
gs3 = —a’(t)r?sin?0 g3 = L __ L
933 a?(t)r?sin? 0
With this convention, g,,, and g"” are dimensionless.
3.2. Christoffel symbols for the FLRW metric
1 v 1 vo
Lypp = ) (Gpvp = Gpuw + Gupn) I, = 59 (Guop = Gop,o + Gopu)

The only non-zero Christoffel symbols are:

1 aa

Y = 152 o, = %aéz 7 ry, = %ad 2 sin? 6
Tl =11, = %g Tl = ;01_]“];7& 1= —];Oru —kr?) Tk = —;Oru — kr?)sin® 6
1%2:11%0:1“83:1“%0:%% F%QZI‘%l:F%:F%:éOi
P§3——Pfosin6?cosﬁ PgS_F%_PTOZ?ITz

With the chosen convention, [I'},] = L~1.
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3.3. Ricci curvature tensor and Einstein’s tensor

For the FLRW metric, the Ricci tensor is:

3 a
Ry =—=-
00 24
R L da+2a2+2k
Doy g2\ 2" 2 R?
. .2
o fda  2a 2k
RQQ—T <62+02+}%3

aa 242 2%k
R33 = r2sin? 6 < + — + >
c? c? Rg

The Ricci scalar:

al a1 k
RE=—6|-— 4 —— + —5—
@ [a c? * a? c? * R%a2:|

And the Einstein’s tensor:
-2
a1 k
+3——
R3a2
al a%1 k
Gui = ou [2 e RO]

Goo=3—5—3
a? c?

with i € {1,2,3}.

3.4. Stress-energy tensor

The stress-energy tensor (or energy-momentum tensor) describes the density and flux of energy and
momentum in spacetime.

energy
density energy flux

shear stress

T30 131 T3p T3z |Pressure

momentum momentum
density flux

For a perfect fluid (no viscosity) in thermodynamic equilibrium, in a flat Minkovski spacetime, the
stress-energy tensor is:

e=pc2 0 0 0

B 0 p 0 0
T 0 0 p O
0 0 0 p

This may be written as

.U,
T;U/ = (8 +p) £ — P9uv
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In the comoving reference frame, the same equation gives (u = 0):

UsUs
Too=(e+p)—5 —Pgo=ct+p-p=¢
2
pa
Ty =—"
U= k2
Ty = pa’r?

Ty3 = pa’r? sin® 0

Ty = —Dpgii fori € {1,2,3}

4. The Friedmann equations

Using the previous results, we could find the Friedmann equations:

a2 kc? A 871G

I e P L
a? R%a2 3 3c2

i Ac? e
PR R

Where € = pc? is the energy density, and p is the pressure of the fluid filling the universe. We have
two equations for three unknowns: a(t), (t) and p(¢).

The expansion rate H (t) is defined by:

R(t) _ a(t)
H = —- = —
W R0 " aw
We may define a critical density . = p.c?:
9, TG _ 8nG
H2(t) = T2 pult) = et

At present time ¢,

Hy = H(tp) ~ 70km/s/Mpc
Peo = pe(to) = 9 x 102" kgm ™ ~ 1.4 x 10" Mg, Mpc ™3

€c0 = 5200 MeV m™? ~ 5 protons per m*

Densities may be expressed as function of the critical density:
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5. Fluid equation and state equation

Using the hypothesis that the expansion is an adiabatic process (6Q) = 0), We get:
0Q =dE +pdV =0 ie. dS =0
from which we deduce: 4
€+ 35(5 +p)=0
For a given fluid, with an equation of state p = we = wpc?,

S= B S e = elt)alt)

For non-relativistic matter:
Pm <L Em = pmC Wm0 em(t) = em(to)/a(t)?

For light, relativistic matter (photons, neutrinos,...):

Er
DPr = — Wy =

” L el =erl)/alr)’

For a cosmological constant A:
pA=—en  wp=—1

6. Redshift and distances

Redshift. The observed redshift of distant galaxies z is defined as:

)\obs 1 142= )\obs _ CL(tobs) _ 1

z
Aemit Aemit a (temit) a (t)

Comoving distance x and proper distance dp. The comoving distance x is the (dimensionless)
distance between two points measured at the present cosmological time. It is constant for objects
moving within the Hubble flow (with no peculiar velocity).

to edt!
= / Roa(t))

emit

The proper distance is the distance between objects at a given cosmological time,

dp(t) = /0 " R(t)dx = R(t)x = Roalt)x

This is the distance we measure to nearby objects.

The variation with time of dp(t) gives:

op(t) = dp(t) = Rt)x = 2D Rty = “Wapey = Heydp(t)
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Angular distance d4. If we know the transverse size ¢ of a distant object (when the photons were
emitted), and if we measure the apparent angular diameter 60 of the same object, we can get the
angular distance d 4 to this object:

da = 5% = Rl(temit)Sk(x) = Roaltemit)Sk(x)  da(2) = (1+2)" RoSk(x)

Luminosity distance d;. When observing an object of known luminosity, we could define the lumi-
nosity distance dy, in terms of the relationship between the absolute magnitude M and the apparent
magnitude m of that object:

d
m—M:[L:E)lOglO (T&) :510g10dL -5

where 1 is the distance modulus. If the absolute magnitude is known (for a standard candle), then
the luminosity distance dj, can be measured.

The luminosity distance can be expressed using the metric:

dp = ﬁRoSk(X) dr(z) = (14 2)RoSi(x) = (14 2)%d4

Particle horizon distance dy (aka horizon distance). The most distant objects you can see, at least
in theory, are the one which emitted light at ¢ = 0 and which is just reaching us on Earth now, i.e.
at t = to. The horizon is the spherical surface of radius dy (o) centered on Earth, beyond which we
cannot see because light coming from objects lying outside the horizon have not had time to reach
us. The current horizon distance can be written:

Figure 1: The Einstein field equation, painted on an old steam engine, in the “Train Cemetery” close to Uyuni,
Bolivia.

7



