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1. Distance, metrics and curvature

In a reference frame where the coordinates are x̃ : xµ, the distance ds between two points separated
by dxµ is:

ds2 = gµνdxµdxν

Where gµν is the metric tensor.

If the space is curved, you cannot cancel all the second derivatives of gµν relatively to the coordinates.

The connection coefficients (Christoffel symbols) describe the effects of parallel transport in curved
space:

Γνµρ =
1

2
(gµν,ρ − gρµ,ν + gνρ,µ) Γνµρ =

1

2
gνσ (gµσ,ρ − gρµ,σ + gσρ,µ) where gµν,ρ = ∂ρgµν =

∂gµν
∂xρ
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To take properly into account the effects of parallel transport in a curved space, the derivative should
be replaced by the covariant derivative,

qµ;ν =
Dqµ

Dxν
=
∂qµ

∂xν
+ Γµνρq

ρ = qµ,ν + Γµνρq
ρ

The curvature may be expressed through the Riemann curvature tensor:

Rαβγδ = Γαβδ,γ − Γαβγ,δ + ΓασγΓσβδ − ΓασδΓ
σ
βγ

and with the Ricci tensor Rµν and the Ricci scalar Rαα:

Rµν = Rαµαν Rαα = gµνRµν

In such a curved space, free particles follow the geodesics, defined by:

Dpµ

Dτ
= 0 with pµ = m

dxµ

dτ

Dqµ

Ds
=

dqµ

ds
+ Γµνρq

ν dxρ

ds

this provides the trajectories of free particles along the geodesics:

d2xµ

dτ2
+ Γµνρ

dxν

dτ

dxρ

dτ
= 0

2. General Relativity: Einstein’s equation

The Einstein field equations link the curvature of spacetime, described with the Ricci curvature tensor
Rµν , to the contents in matter and energy through the stress-energy tensor Tµν :

Rµν −
1

2
Rααgµν − Λgµν =

8πG

c4
Tµν

This may also be written using the Einstein’s tensor Gµν ,

Gµν = Rµν −
1

2
Rααgµν

And the field equation then becomes:

Gµν − Λ gµν =
8πG

c4
Tµν

Dimensions: [Rµν ] = [Gµν ] = [Λ] = L−2 ; [Tµν ] = ML−1T−2 ; [G] = M−1L3T−2.

3. The Friedman-Lemaître-Robertson-Walker metric

As the universe is considered to be homogeneous and isotropic, its metric should be the most symet-
ric solution of the Einstein equation, with a uniform curvature. This metric is the Friedman-Lemaître-
Robertson-Walker (FLRW) metric:

ds2 = c2dt2 −R2(t)
(
dχ2 + S2

k(χ)
(
dθ2 + sin2 θ dϕ2

))
Sk(χ) =


sinχ k = +1
χ k = 0
sinhχ k = −1

2
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With the following comoving coordinates x̃ : xµ = (ct, χ, θ, ϕ).

In this equation, R(t) is the universe scale factor ([R(t)] = L). a(t) = R(t)/R(t0) is the dimensionless
scale factor, with the convention a(t0) = 1 at current time t0.

The metric may also be written:

ds2 = c2dt2 −R2
0a

2(t)
(
dχ2 + S2

k(χ)
(
dθ2 + sin2 θ dϕ2

))
Or, if we define r = Sk(χ),

ds2 = c2dt2 −R2
0a

2(t)

(
dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dϕ2

))

3. 1. FLRW metric

To get a properly dimensioned metric tensor, we may also use the coordinates: x̃ : xµ = (x0, x1, x2, x3) =
(ct, R0r,R0θ,R0ϕ). The metric then becomes:

ds2 = gµνdxµdxν = c2dt2 − a2(t)

(
R2

0dr2

1− kr2
+ r2

(
R2

0dθ2 + sin2 θR2
0dϕ2

))
The metric and the inverse metric are diagonal, and the metric coefficients are:

g00 = 1 g00 =
1

g00
= 1

g11 = − a2(t)

1− kr2
g11 =

1

g11
= −1− kr2

a2(t)

g22 = −a2(t)r2 g22 =
1

g22
= − 1

a2(t)r2

g33 = −a2(t)r2 sin2 θ g33 =
1

g33
= − 1

a2(t)r2 sin2 θ

With this convention, gµν and gµν are dimensionless.

3. 2. Christoffel symbols for the FLRW metric

Γνµρ =
1

2
(gµν,ρ − gρµ,ν + gνρ,µ) Γνµρ =

1

2
gνσ (gµσ,ρ − gρµ,σ + gσρ,µ)

The only non-zero Christoffel symbols are:

Γ0
11 =

1

c

aȧ

1− kr2
Γ0

22 =
1

c
aȧ r2 Γ0

33 =
1

c
aȧ r2 sin2 θ

Γ1
01 = Γ1

10 =
1

c

ȧ

a
Γ1

11 =
1

R0

kr

1− kr2
Γ1

22 = − 1

R0
r(1− kr2) Γ1

33 = − 1

R0
r(1− kr2) sin2 θ

Γ2
02 = Γ2

20 = Γ3
03 = Γ3

30 =
1

c

ȧ

a
Γ2

12 = Γ2
21 = Γ3

13 = Γ3
31 =

1

R0

1

r

Γ2
33 = − 1

R0
sin θ cos θ Γ3

23 = Γ3
32 =

1

R0

cos θ

sin θ

With the chosen convention, [Γµνρ] = L−1.

3
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3. 3. Ricci curvature tensor and Einstein’s tensor

For the FLRW metric, the Ricci tensor is:

R00 = − 3

c2

ä

a

R11 =
1

1− kr2

(
äa

c2
+

2ȧ2

c2
+

2k

R2
0

)
R22 = r2

(
äa

c2
+

2ȧ2

c2
+

2k

R2
0

)
R33 = r2 sin2 θ

(
äa

c2
+

2ȧ2

c2
+

2k

R2
0

)
The Ricci scalar:

Rαα = −6

[
ä

a

1

c2
+
ȧ2

a2

1

c2
+

k

R2
0a

2

]
And the Einstein’s tensor:

G00 = 3
ȧ2

a2

1

c2
+ 3

k

R2
0a

2

Gii = gii

[
2
ä

a

1

c2
+
ȧ2

a2

1

c2
+

k

R2
0a

2

]
with i ∈ {1, 2, 3}.

3. 4. Stress-energy tensor

The stress-energy tensor (or energy-momentum tensor) describes the density and flux of energy and
momentum in spacetime.

energy
density energy flux

momentum
density

momentum
flux

shear stress

pressure

For a perfect fluid (no viscosity) in thermodynamic equilibrium, in a flat Minkovski spacetime, the
stress-energy tensor is:

Tµν =


ε = ρc2 0 0 0

0 p 0 0
0 0 p 0
0 0 0 p


This may be written as

Tµν = (ε+ p)
UµUν
c2
− pgµν

4
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In the comoving reference frame, the same equation gives (u = 0):

T00 = (ε+ p)
U0U0

c2
− pg00 = ε+ p− p = ε

T11 =
pa2

1− kr2

T22 = pa2r2

T33 = pa2r2 sin2 θ

Tii = −pgii for i ∈ {1, 2, 3}

4. The Friedmann equations

Using the previous results, we could find the Friedmann equations:

ȧ2

a2
+

kc2

R2
0a

2
− Λc2

3
=

8πG

3c2
ε

ä

a
− Λc2

3
= −4πG

3c2
(ε+ 3p)

Where ε = ρc2 is the energy density, and p is the pressure of the fluid filling the universe. We have
two equations for three unknowns: a(t), ε(t) and p(t).

The expansion rate H(t) is defined by:

H(t) =
Ṙ(t)

R(t)
=
ȧ(t)

a(t)

We may define a critical density εc = ρcc
2:

H2(t) =
8πG

3
ρc(t) =

8πG

3c2
εc(t)

ρc(t) =
3

8πG
H2(t) εc(t) =

3c2

8πG
H2(t)

At present time t0,

H0 = H(t0) ' 70 km/s/Mpc

ρc,0 = ρc(t0) ' 9× 10−27 kg m−3 ' 1.4× 1011 M�Mpc−3

εc,0 ' 5200 MeV m−3 ' 5 protons per m3

Densities may be expressed as function of the critical density:

Ω(t) =
ρ(t)

ρc(t)
=

ε(t)

εc(t)

5
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5. Fluid equation and state equation

Using the hypothesis that the expansion is an adiabatic process (δQ = 0), We get:

δQ = dE + pdV = 0 i.e. dS = 0

from which we deduce:
ε̇+ 3

ȧ

a
(ε+ p) = 0

For a given fluid, with an equation of state p = wε = wρc2,

ε̇

ε
= −3(w + 1)

ȧ

a
ε(t) = ε(t0)a(t)−3(w+1)

For non-relativistic matter:

pm � εm = ρmc
2 wm ' 0 εm(t) = εm(t0)/a(t)3

For light, relativistic matter (photons, neutrinos,. . . ):

pr =
εr
3

wr =
1

3
εr(t) = εr(t0)/a(t)4

For a cosmological constant Λ:
pΛ = −εΛ wΛ = −1

6. Redshift and distances

Redshift. The observed redshift of distant galaxies z is defined as:

z ≡ λobs

λemit
− 1 1 + z =

λobs

λemit
=

a(tobs)

a(temit)
=

1

a(t)

Comoving distance χ and proper distance dP . The comoving distance χ is the (dimensionless)
distance between two points measured at the present cosmological time. It is constant for objects
moving within the Hubble flow (with no peculiar velocity).

χ =

∫ t0

temit

cdt′

R0 a(t′)

The proper distance is the distance between objects at a given cosmological time,

dP (t) =

∫ χ

0
R(t) dχ = R(t)χ = R0a(t)χ

This is the distance we measure to nearby objects.

The variation with time of dP (t) gives:

vP (t) = ḋP (t) = Ṙ(t)χ =
Ṙ(t)

R(t)
R(t)χ =

ȧ(t)

a(t)
dP (t) = H(t)dP (t)

6
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Angular distance dA. If we know the transverse size ` of a distant object (when the photons were
emitted), and if we measure the apparent angular diameter δθ of the same object, we can get the
angular distance dA to this object:

dA =
`

δθ
= R(temit)Sk(χ) = R0a(temit)Sk(χ) dA(z) = (1 + z)−1R0Sk(χ)

Luminosity distance dL. When observing an object of known luminosity, we could define the lumi-
nosity distance dL in terms of the relationship between the absolute magnitude M and the apparent
magnitude m of that object:

m−M = µ = 5 log10

(
dL

10 pc

)
= 5 log10 dL − 5

where µ is the distance modulus. If the absolute magnitude is known (for a standard candle), then
the luminosity distance dL can be measured.

The luminosity distance can be expressed using the metric:

dL =
1

a(temit)
R0Sk(χ) dL(z) = (1 + z)R0Sk(χ) = (1 + z)2dA

Particle horizon distance dH (aka horizon distance). The most distant objects you can see, at least
in theory, are the one which emitted light at t = 0 and which is just reaching us on Earth now, i.e.
at t = t0. The horizon is the spherical surface of radius dH(t0) centered on Earth, beyond which we
cannot see because light coming from objects lying outside the horizon have not had time to reach
us. The current horizon distance can be written:

dH(t0) =

∫ t0

0

cdt

a(t)

Figure 1: The Einstein field equation, painted on an old steam engine, in the “Train Cemetery” close to Uyuni,
Bolivia.
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