Master NPAC
 Cosmology - Lesson 2

Academic Year 2016-2017

Problems

Q1 - Suppose you are living inside the surface of a sphere of radius R. If you draw a circle of radius L, what is the circle circumference?

The Earth may be idealized as a perfect sphere of radius $R=6371 \mathrm{~km}$. If you could measure distances with a precision of $\pm 1 \mathrm{~m}$, how large should you draw a circle on Earth's surface to convince yourself that the Earth is spherical rather than flat?

Q 2 - Suppose you are still a two-dimensional being, trapped inside the surface of a sphere (of radius R). An object of width ℓ sits at a distance d (measured on the surface) from you. What angular width $\delta \theta$ will you measure? What happens when $d \longrightarrow \pi R$?

Q3 - In cartesian coordinates, write and solve the geodesic equations for a two-dimensional flat plane and show that the solutions are straight lines.

Q4 - For the two-dimensional sphere (previous question), do the following variable change: $(\theta, \varphi) \rightarrow$ (ρ, Θ) with $\rho=R \sin \theta$ and $\Theta=\varphi$. Compute the metric with this new coordinate system. What is ρ ?

Q 5 - In the usual spherical coordinates, the metric of a two dimensional sphere is:

$$
\mathrm{d} l^{2}=R^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \varphi^{2}\right)
$$

where R is a constant. Compute the metric $g_{\mu \nu}$, the inverse metric $g^{\mu \nu}$, the Christoffel symbols $\Gamma_{\nu \rho}^{\mu}$ and show that a great circle is a solution of the geodesic equation (you have the freedom to choose your coordinate system).
Q6 - Do the complete calculation of all the non-zero Christoffel symbols for the FLRW metric. Deduce the Ricci tensor $R_{\mu \nu}$ (only terms R_{00} and $R_{i i}$ for $i \in\{1,2,3\}$ are non-zero) and the Ricci scalar R_{α}^{α}. Using the expression of the energy-stress tensor $T_{\mu \nu}$, establish the Friedmann equations (The calculation takes some time).

