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1 The Friedmann equations

The Friedmann equations may be written:

a*(t)  8nG Ac? kc?
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Where £(t) = p(t)c? is the energy density, and p(t) is the pressure of the fluid filling the universe. We

have two equations for three unknowns: a(t), £(t) and p(t).

The expansion rate H (t) is defined by:

R(t) _ a(t)
H(t) = = —=
RO T
We may define a critical density . = p.c?:
9, 8mG _ 8nG
H2(t) = T2 pult) = et
_ 3 e _ 3¢
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At present time ?g,
Hy = H(to) ~ 70km/s/Mpc
peo = pe(to) =9 x 107 kgm ™3 =~ 1.4 x 10" Mg Mpc

£e0 =~ 5200 MeV m ™2 ~ 5 protons per m?

Densities may be expressed as function of the critical density:

o) e
U0 =0~ w

1.1 The fluid equation

Using the hypothesis that the expansion is an adiabatic process (6Q) = 0), We get:
0Q = dFE +pdV =0 ie. dS =0
from which we deduce:

é+3%(£+p)=0

For a given fluid, with an equation of state p = we = wpc?,

a

S B ) = clto)a(t)HHY
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For non-relativistic matter:
P K Em = PmC> Wy =~ 0 em(t) = em(to)/a(t)?

For light, relativistic matter (photons, neutrinos,...):

=T we=g =(t) =s(t)/a®)!
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1.2 The cosmological constant as a fluid with negative pressure

The Friedmann equations may be rewritten as:

a? kc? 87G
a222 + RZa2(t) ~ 32 e(t) @
T =~ €0 +30(0) ®

by absorbing the A term in the density and pressure terms:

Ac?

e—e+en  p—p+DpA with  ep = — DA = —€A )

8rG
The cosmological constant is then interpreted as a fluid of constant density, with a negative pressure
pr = wpaep with wy = —1. The cosmological constant may be seen as the simplest type of “dark

energy”.

1.3 Open or closed universe

If the universe contains a mixing of several component 7 with different equations of state p; = we;,
the first Friedmann equation could be written:

a’(t) 8nG kc?

204y _ _ — E ,
H4(t) = 2(1) " 3 e(t) a0 where ¢ : € (10)
Using the critical density e.(t), this can be rewritten as:
kc? e(t)
—— e = H?(t) [1 - Q(t here Q(t) = 11
20 WL -0@]  where 0(t) == (11)

As the sign of the left member of this equation cannot change, the same is true for the right term as
well. It means that if 2 > 1 (supercritical), then £ = +1 and the universe is closed and positively
curved, and this will stay true forever; if 2 < 1 (subcritical), & = —1 and the universe is open and
negatively curved. If €2 is exactly equal to 1, the universe is open and flat (k = 0).

Equation (11) is also verified at current time ¢y (a(to) = 1):

kc?

—%=%u4m (12)

By replacing —kc?/R3 by its expression, we get the Friedmann equation rewritten with the relative
densities at current time ¢g:

H2(t)  &(t) )
= 1 _ Q —
Hg 56,0 +( U)a
H2(t)  em(t) +e0(t) +en(t) + - )
- + (1 —-Qg)a~
Hg €¢,0 ( 0)
H2(t) 5m06l_3+5r0a_4—|—5A0—|-... )
= : : T (1-Q)a"
H? ce0 ( 0)
H2(t)

= Qmpa_g + Q7a7()cl_4 + QA70 + -+ (1 — Qo)a_2

Hg

where .o = e.(to) = 3c2Hj /87G is the critical density now (at t = to).
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1.4 Age of the universe

From the previous equation we can deduce the age ¢, of an expanding universe:

da \ 2
H%(t) = <a§t> = H§ [Qnoa™> + Qoa ™+ Qap+ -+ (1 — Qo)a?] (13)
Which gives:

@:% da (14)

0 \/Qm,oa_l + Qoa %+ Qpoa® + -+ (1= Q)

a(t0)=1
to 1 da

to = dt = — 15
OA i (15)

0 \/Qm,oa—l + Qroa 2 + Qp0a® + -+ (1 — Q)

In the most general case, this integral should be computed numerically.

1.5 Distances

Once the Friedmann equation is solved, we would know a(t). We may then compute the various
distances defined in lesson 2. The comoving coordinate x to an object at redshift z is then;

iﬁ“c&_c/ww_c ' da
= t Ro a(t) Ry J, aa Ry (142)-1 aa

emit emit

c /1 da 1
X= 57 —
Hollo Jaynr @ \/Qm,oa_3 +Qroat + Qpo+ -+ (1 - Q)a?

The proper distance dp, the angular distance d4 and the luminosity distance d;, could then be calcu-
lated using the value of x(z),

dp(t) = a(t)x
da = RoSp(x)(1+2)7"
dr, = RoSk(x)(1+ 2)

2 Universe models

In this section we will solve the Friedmann equations for different universe models.

2.1 Empty universe (Milne)

The most simple model we may consider is an empty universe, with e = 0. Equation (7) becomes:

_ke
R

a? 2
H2(t) = a28 _ _R%ka?(t) e @) =

(16)
This equation has two solutions. First, a static (¢ = 0) and flat (k = 0) universe with no evolution.

4
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But there is also another solution with:

2

k=-1 a*=—
“ TR Ro

For an expanding universe, the expansion is linear,

c t 1 RO
a( ) RO to 0 H() Cc
In that universe, .
t
T T

This empty universe (“Milne universe”) has no horizon:
din (1) /t A /tdt—>+
gt)=c| ——==cto | — 00
o a(t) o t

2.2 Matter-dominated universes

In a universe containing only matter, 2 = €2,,, and equation (7) becomes:

2(t)  8nG . kc?
H2 t) = L ( - m t =3
=230 = 32 om0 "~ moa
This can also be written: 21 0
a“(t 0
= — 1-0Q
Hg a(t) + ( 0)

2.2.1 Critical universe (2 = Q,,, = 1, “Einstein-de Sitter”)

Academic Year 2016-2017

(17)

(18)

(19)

(20)

(21)

(22)

For a flat universe (k = 0) containing only matter, the matter density is exactly equal to the critical

density, and the Friedmann equation gives:

alt) = [tr/g to= =2 en(t) = emoa(t) = emo {t} -

to 3Hy

And the horizon distance at current time is:

See fig. 1.
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Figure 1: Evolution of a flat matter dominated universe (critical universe, Q@ = Q,, = 1)

2.2.2 Subcritical universe (2 < 1)

The matter density is below the critical density: 2, = 2 < 1. The universe will be open and nega-

tively curved (k = —1), and the solution of equation (22) is:
1 Q , R. 41GR!sy 1
a(n):§1_Qo(cosh77—1):a*(coshn—l) with a*:R—Oz 34 21 q
1 Qo Roa*

(sinhn —n) = (sinhn —n)

" 2H, (1— Q)32

where 7 goes from 0 to 4-co (See fig. 3).

2.2.3 Supercritical universe (2 > 1)

When matter density is above the critical density: €2, = Q2 > 1, the solution gives a closed universe
with positive curvature (k = +1). Equation (22) then gives:

1 Q

amax

o) = 3 42011~ cosn) = “92 (1 cosn)
1 Q .
t(n) = 2H, (Q _01)3/2 (n —sinn)

This is the parametric equation of a cycloid. The universe will expand and reach a maximum scale
factor for n = w, at

Q 87G Reg ) ™ Qo
Amax = a(ﬂ') - QO 1 = 364 at time tmax = t(ﬂ-) = 2H0 (QO _ 1)3/2 (23)
At n = 27, the Big Crunch will occurs:
. T Q
CL(27[') =0 attime {.unch = t(27‘d’) = 70 m (24)

If each Big Crunch is followed by a new Big Bang, the universe may have a cyclic evolution (See
fig 2).
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Figure 2: Evolution of a cyclic universe (d = Q,,, > 1, k = +1)

scale factor R/R,
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Figure 3: Evolution of a universe dominated by matter, for a critical (k = 0), a subcritical (k = —1) and a

supercritical (k = +1) universe.
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2.3 Vacuum-dominated universes (de Sitter)

For a universe containing only a cosmological constant (“vac-

uum” or “dark energy”), equation (7) becomes: M

2 A2 o2
PE0 P G
a? 3 Rja? i 1
A 2 2 r b
2= 2¢ 2 k% o~ .
3 Rg |
o 1
The solution is: e |
cosh(t/ty) k=+1 - i
R(t) = Roa(t) = Ry x { 1et/ta k=0 I 1
sinh(t/ty) k=-1 L |
Where i |
1 3 _ 3 O 11 1 1 I L1 1 1 I 111 1 I 111 1
=2y I laa=ca =y /¢ 0 05 1 15 2
These solutions give a universe which expands exponentially. t/t,

In the £ = 0 case, the expansion rate is constant:
Figure 4: Evolution of a universe

B R(¢) B @ n dominated by a cos.mological_ con-
H(t) = R = =c 5 = H, stant, for an open universe (k = —1,
(t) (t) lower curve), a flat one (k = 0) and

a closed universe (k = +1, upper

For k = +1, the scale factor has a minimum value Ry, = Rp, curve).
which means that such a universe had no Big Bang (Big Bounce
solutions).

2.4 Flat universes

For a flat universe, 2 = 1 and k = 0, equation (7) becomes:

»)
(G (t) _ 887G
") a?(t)  3c?

e(t)

If the universe contains only one fluid of density §}; = Q2 = 1, which equation of state is p = we,
1314w le=0  e(t) =epa(t) 30+
a

Then, for a flat universe containing a dominant fluid,

8rG
-2 _ —(1+3w
a“(t) = 5.2 S00 ( )
The general solution is:
2
o= LT, c 1 2. 2 .
a = _— = = — [ —
to "T 1% w VorGe 07 31 +w) " 07 314w O
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The energy density evolves with time as:

, t]172
e(t) = gga 30FW) = ¢4 [}
to
The horizon distance will be:
3(1 4+ w) zaoy , Ltsw 3(1 4 w) c 2
dp(t) = e 2430+ 4305w dyg(tg) = ct =
m(t) Cl—|—3w 0 i (to) = cto

143w _Fo1+3w

If w > —1/3 there is a event horizon. On the opposite, if w < —1/3 there is no horizon: all space is
causally connected and if the universe is transparent you can see all of it.

2.4.1 Matter dominated flat universe

As found previously, for a flat universe dominated by matter (w,, ~ 0) we get:

£1%3 2 3 ]~
a(t) = [to} to = 37Ho em(t) = emoa(t) ™ = emo [to}
And the horizon distance at current time is:
2c
dyg(ty) = —
a(to) o7

2.4.2 Radiation dominated flat universe

0
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Figure 5: Evolution of the scale factor a(t) = R(t)/ Ry for a radiation dominated universe.

For a flat universe dominated by radiation (w, = 1/3) we get:

712 1 A t172
a(t) = [to] to = 3Ho er(t) = erpalt)™ =eno LO]

And the horizon distance at current time is:

Cc
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2.5 Matter and A

In a universe containing both matter and a cosmological constant A, 2 = €,,, +- Q4 and the Friedmann
equation may be written as

H2(t)  Qmo 1 —Qmo— Qa0
Hg B * a? + 0

The first and the last terms are positive, but the center one may be negative for a closed universe with
Q = Q,, + Qp > 1. Such a universe may exhibit very interesting behavior, depending of the values
of Q0 and Q4 o (See fig. 6 and 8). As H?(t) should be positive (otherwise it would be unphysical),
Some combination of (€2, 0,24 0, a(t)) will not be allowed.

3 1 1 1 1 I 1 I I I I 1 1 1 1
2 -
i oo 1
g cce\e}?\/ <]
L NI 1

Expands Forever

ses Eventually
\T |

_1 1 1 1 1 I 1 1 1 1 1 1 1 1

Figure 6: Universe evolution depending on §),,, and Q, in the plane (Q,,,, Q).
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2.5.1 Matter and A for a flat Universe

In that case, 2 = Q,, + Q5 = 1 and the Friedmann equation becomes

H2(t) Qo Qim0
HZ c:;’ 8o = ZL?” + (1= 2myo)

The scale factor a(t) is:

2

2/3
3Ho\/T— o,
a(t) = [ o inh ( 0 0 t)]

35
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0.0 0.5 1.0 15 2. 0.0

Time t (in 1/H, units)

Figure 7: Left: evolution of the scale factor a(t) for a flat universe for different values of §2,,, and Q. Right:
age to of a flat universe with Q,,, + Qx = 1 as a function of §2,,.
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Figure 8: Evolution of the scale factor a(t) depending on §2,,, and (2, in the plane (2,,,, Q).

12



UPMC - NPAC - Cosmology Academic Year 20162017

3 The Benchmark Model (aka Concordance Model, aka ACDM)
It seems that our Universe is flat (k = 0, 9 = 1). In early times, it was dominated by radiation,

a(t) ~ <2MHot) 2 [a < arp]

Until the radiation-matter equality arount a ~ a,n, = 0/ 0 ~ 2.8 x 10~%. It was then dominated
by matter,

3 2/3
a(t) ~ <2\/Qm70Hot> [a > arm)

In the next era, cosmological constant dominates. This era starts around a,;,a = (Qn,0/Qa0)"/3. Then
the scale factor will increase exponentially,

a(t) ~ ama exp (\/QA’UH0t> [a > ama]

Our Universe : recipe

photons Qy0~50x1075
neutrinos Q,0~34x 107°
total radiation Q0 >~ 8.4 x 1075
baryonic matter Q0 >~ 0.04
non-baryonic matter Qdm,0 ~ 0.26
total matter Qo ~0.3
cosmological constant Qrp ~0.7
Epochs
radiation-matter equality  a,,, ~ 2.8 x 107% ¢y, ~ 4.7 x 10* yr
matter-A equality amp ~ 0.75 tma ~ 9.8 Gyr
now ag = a(ty) =1 to ~ 13.5 Gyr

13
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Figure 9: Our Universe different eras.
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