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1 The Friedmann equations

The Friedmann equations may be written:

ȧ2(t)

a2(t)
=

8πG

3c2
ε(t) +

Λc2

3
− kc2

R2
0a

2(t)
(1)

ä(t)

a(t)
= −4πG

3c2
(ε(t) + 3p(t)) +

Λc2

3
(2)

Where ε(t) = ρ(t)c2 is the energy density, and p(t) is the pressure of the fluid filling the universe. We
have two equations for three unknowns: a(t), ε(t) and p(t).

The expansion rate H(t) is defined by:

H(t) =
Ṙ(t)

R(t)
=
ȧ(t)

a(t)

We may define a critical density εc = ρcc
2:

H2(t) =
8πG

3
ρc(t) =

8πG

3c2
εc(t)

ρc(t) =
3

8πG
H2(t) εc(t) =

3c2

8πG
H2(t)

At present time t0,

H0 = H(t0) ' 70 km/s/Mpc

ρc,0 = ρc(t0) ' 9× 10−27 kg m−3 ' 1.4× 1011 M� Mpc−3

εc,0 ' 5200 MeV m−3 ' 5 protons per m3

Densities may be expressed as function of the critical density:

Ω(t) =
ρ(t)

ρc(t)
=

ε(t)

εc(t)
(3)

1.1 The fluid equation

Using the hypothesis that the expansion is an adiabatic process (δQ = 0), We get:

δQ = dE + pdV = 0 i.e. dS = 0 (4)

from which we deduce:
ε̇+ 3

ȧ

a
(ε+ p) = 0 (5)

For a given fluid, with an equation of state p = wε = wρc2,

ε̇

ε
= −3(w + 1)

ȧ

a
ε(t) = ε(t0)a(t)−3(w+1) (6)

For non-relativistic matter:

pm � εm = ρmc
2 wm ' 0 εm(t) = εm(t0)/a(t)3

For light, relativistic matter (photons, neutrinos,. . . ):

pr =
εr
3

wr =
1

3
εr(t) = εr(t0)/a(t)4
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1.2 The cosmological constant as a fluid with negative pressure

The Friedmann equations may be rewritten as:

ȧ2(t)

a2(t)
+

kc2

R2
0a

2(t)
=

8πG

3c2
ε(t) (7)

ä(t)

a(t)
= −4πG

3c2
(ε(t) + 3p(t)) (8)

by absorbing the Λ term in the density and pressure terms:

ε −→ ε+ εΛ p −→ p+ pΛ with εΛ =
Λc2

8πG
pΛ = −εΛ (9)

The cosmological constant is then interpreted as a fluid of constant density, with a negative pressure
pΛ = wΛεΛ with wΛ = −1. The cosmological constant may be seen as the simplest type of “dark
energy”.

1.3 Open or closed universe

If the universe contains a mixing of several component i with different equations of state pi = wεi,
the first Friedmann equation could be written:

H2(t) =
ȧ2(t)

a2(t)
=

8πG

3c2
ε(t)− kc2

R2
0a

2(t)
where ε =

∑
i

εi (10)

Using the critical density εc(t), this can be rewritten as:

− kc2

R2
0a

2(t)
= H2(t) [1− Ω(t)] where Ω(t) =

ε(t)

εc(t)
(11)

As the sign of the left member of this equation cannot change, the same is true for the right term as
well. It means that if Ω > 1 (supercritical), then k = +1 and the universe is closed and positively
curved, and this will stay true forever; if Ω < 1 (subcritical), k = −1 and the universe is open and
negatively curved. If Ω is exactly equal to 1, the universe is open and flat (k = 0).

Equation (11) is also verified at current time t0 (a(t0) = 1):

−kc
2

R2
0

= H2
0 [1− Ω0] (12)

By replacing −kc2/R2
0 by its expression, we get the Friedmann equation rewritten with the relative

densities at current time t0:

H2(t)

H2
0

=
ε(t)

εc,0
+ (1− Ω0)a−2

H2(t)

H2
0

=
εm(t) + εr(t) + εΛ(t) + · · ·

εc,0
+ (1− Ω0)a−2

H2(t)

H2
0

=
εm,0a

−3 + εr,0a
−4 + εΛ,0 + · · ·

εc,0
+ (1− Ω0)a−2

H2(t)

H2
0

= Ωm,0a
−3 + Ωr,0a

−4 + ΩΛ,0 + · · ·+ (1− Ω0)a−2

where εc,0 = εc(t0) = 3c2H2
0/8πG is the critical density now (at t = t0).
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1.4 Age of the universe

From the previous equation we can deduce the age t0 of an expanding universe:

H2(t) =

(
da

a dt

)2

= H2
0

[
Ωm,0a

−3 + Ωr,0a
−4 + ΩΛ,0 + · · ·+ (1− Ω0)a−2

]
(13)

Which gives:

dt =
1

H0

da√
Ωm,0a

−1 + Ωr,0a
−2 + ΩΛ,0a

2 + · · ·+ (1− Ω0)
(14)

t0 =

∫ t0

0
dt =

1

H0

∫
a(t0)=1

0

da√
Ωm,0a

−1 + Ωr,0a
−2 + ΩΛ,0a

2 + · · ·+ (1− Ω0)
(15)

In the most general case, this integral should be computed numerically.

1.5 Distances

Once the Friedmann equation is solved, we would know a(t). We may then compute the various
distances defined in lesson 2. The comoving coordinate χ to an object at redshift z is then;

χ =

∫ tobs

temit

c

R0

dt

a(t)
=

c

R0

∫ aobs

aemit

da

aȧ
=

c

R0

∫ 1

(1+z)−1

da

aȧ

χ =
c

R0H0

∫ 1

(1+z)−1

da

a2

1√
Ωm,0a−3 + Ωr,0a−4 + ΩΛ,0 + · · ·+ (1− Ω0)a−2

The proper distance dP , the angular distance dA and the luminosity distance dL could then be calcu-
lated using the value of χ(z),

dP (t) = a(t)χ

dA = R0Sk(χ)(1 + z)−1

dL = R0Sk(χ)(1 + z)

2 Universe models

In this section we will solve the Friedmann equations for different universe models.

2.1 Empty universe (Milne)

The most simple model we may consider is an empty universe, with ε = 0. Equation (7) becomes:

H2(t) =
ȧ2(t)

a2(t)
= − kc2

R2
0a

2(t)
i.e. ȧ2(t) = −kc

2

R2
0

(16)

This equation has two solutions. First, a static (ȧ = 0) and flat (k = 0) universe with no evolution.

4
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But there is also another solution with:

k = −1 ȧ2 =
c2

R2
0

ȧ = ± c

R0
(17)

For an expanding universe, the expansion is linear,

k = −1 a(t) =
c

R0
t =

t

t0
t0 =

1

H0
=
R0

c
(18)

In that universe,

a =
1

1 + z
=

t

t0
= H0t (19)

This empty universe (“Milne universe”) has no horizon:

dH(t) = c

∫ t

0

dt

a(t)
= ct0

∫ t

0

dt

t
−→ +∞ (20)

2.2 Matter-dominated universes

In a universe containing only matter, Ω = Ωm and equation (7) becomes:

H2(t) =
ȧ2(t)

a2(t)
=

8πG

3c2
εm,0 a(t)−3 − kc2

R2
0a

2(t)
(21)

This can also be written:
ȧ2(t)

H2
0

=
Ω0

a(t)
+ (1− Ω0) (22)

2.2.1 Critical universe (Ω = Ωm = 1, “Einstein-de Sitter”)

For a flat universe (k = 0) containing only matter, the matter density is exactly equal to the critical
density, and the Friedmann equation gives:

a(t) =

[
t

t0

]2/3

t0 =
2

3H0
εm(t) = εm,0 a(t)−3 = εm,0

[
t

t0

]−2

And the horizon distance at current time is:

dH(t0) =
2c

H0

See fig. 1.
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Figure 1: Evolution of a flat matter dominated universe (critical universe, Ω = Ωm = 1)

2.2.2 Subcritical universe (Ω < 1)

The matter density is below the critical density: Ωm = Ω < 1. The universe will be open and nega-
tively curved (k = −1), and the solution of equation (22) is:

a(η) =
1

2

Ω0

1− Ω0
(cosh η − 1) = a∗(cosh η − 1) with a∗ =

R∗
R0

=
4πGR2

0ε0

3c4
=

1

2

Ω0

1− Ω0

t(η) =
1

2H0

Ω0

(1− Ω0)3/2
(sinh η − η) =

R0a∗
c

(sinh η − η)

where η goes from 0 to +∞ (See fig. 3).

2.2.3 Supercritical universe (Ω > 1)

When matter density is above the critical density: Ωm = Ω > 1, the solution gives a closed universe
with positive curvature (k = +1). Equation (22) then gives:

a(η) =
1

2

Ω0

Ω0 − 1
(1− cos η) =

amax
2

(1− cos η)

t(η) =
1

2H0

Ω0

(Ω0 − 1)3/2
(η − sin η)

This is the parametric equation of a cycloid. The universe will expand and reach a maximum scale
factor for η = π, at

amax = a(π) =
Ω0

Ω0 − 1
=

8πGR2
0ε0

3c4
at time tmax = t(π) =

π

2H0

Ω0

(Ω0 − 1)3/2
(23)

At η = 2π, the Big Crunch will occurs:

a(2π) = 0 at time tcrunch = t(2π) =
π

H0

Ω0

(Ω0 − 1)3/2
(24)

If each Big Crunch is followed by a new Big Bang, the universe may have a cyclic evolution (See
fig 2).

6
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Figure 2: Evolution of a cyclic universe (Ω = Ωm > 1, k = +1)

Figure 3: Evolution of a universe dominated by matter, for a critical (k = 0), a subcritical (k = −1) and a
supercritical (k = +1) universe.
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2.3 Vacuum-dominated universes (de Sitter)

Figure 4: Evolution of a universe
dominated by a cosmological con-
stant, for an open universe (k = −1,
lower curve), a flat one (k = 0) and
a closed universe (k = +1, upper
curve).

For a universe containing only a cosmological constant (“vac-
uum” or “dark energy”), equation (7) becomes:

H2(t) =
ȧ2

a2
=

Λc2

3
− kc2

R2
0a

2

ȧ2 =
Λc2

3
a2 − kc2

R2
0

The solution is:

R(t) = R0a(t) = RΛ ×


cosh(t/tΛ) k = +1
1
2e
t/tΛ k = 0

sinh(t/tΛ) k = −1

Where

tΛ =
1

c

√
3

Λ
RΛ = R0aΛ = ctΛ =

√
3

Λ

These solutions give a universe which expands exponentially.
In the k = 0 case, the expansion rate is constant:

H(t) =
Ṙ(t)

R(t)
=
ȧ(t)

a(t)
= c

√
Λ

3
= H0

For k = +1, the scale factor has a minimum value Rmin = RΛ,
which means that such a universe had no Big Bang (Big Bounce
solutions).

2.4 Flat universes

For a flat universe, Ω = 1 and k = 0, equation (7) becomes:

H(t) =
ȧ2(t)

a2(t)
=

8πG

3c2
ε(t)

If the universe contains only one fluid of density Ωi = Ω = 1, which equation of state is p = wε,

ε̇+ 3(1 + w)
ȧ

a
ε = 0 ε(t) = ε0 a(t)−3(1+w)

Then, for a flat universe containing a dominant fluid,

ȧ2(t) =
8πG

3c2
ε0a

−(1+3w)

The general solution is:

a(t) =

[
t

t0

] 2
3(1+w)

t0 =
c

1 + w

1√
6πGε

H0 =
2

3(1 + w)
t−1
0 t0 =

2

3(1 + w)
H−1

0

8
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The energy density evolves with time as:

ε(t) = ε0 a
−3(1+w) = ε0

[
t

t0

]−2

The horizon distance will be:

dH(t) = c
3(1 + w)

1 + 3w
t

2
3(1+w)

0 t
1+3w

3(1+w) dH(t0) = ct0
3(1 + w)

1 + 3w
=

c

H0

2

1 + 3w

If w > −1/3 there is a event horizon. On the opposite, if w ≤ −1/3 there is no horizon: all space is
causally connected and if the universe is transparent you can see all of it.

2.4.1 Matter dominated flat universe

As found previously, for a flat universe dominated by matter (wm ' 0) we get:

a(t) =

[
t

t0

]2/3

t0 =
2

3H0
εm(t) = εm,0a(t)−3 = εm,0

[
t

t0

]−2

And the horizon distance at current time is:

dH(t0) =
2c

H0

2.4.2 Radiation dominated flat universe

Figure 5: Evolution of the scale factor a(t) = R(t)/R0 for a radiation dominated universe.

For a flat universe dominated by radiation (wr = 1/3) we get:

a(t) =

[
t

t0

]1/2

t0 =
1

2H0
εr(t) = εr,0a(t)−4 = εr,0

[
t

t0

]−2

And the horizon distance at current time is:

dH(t0) =
c

2H0

9
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2.5 Matter and Λ

In a universe containing both matter and a cosmological constant Λ, Ω = Ωm+ΩΛ and the Friedmann
equation may be written as

H2(t)

H2
0

=
Ωm,0

a3
+

1− Ωm,0 − ΩΛ,0

a2
+ ΩΛ,0

The first and the last terms are positive, but the center one may be negative for a closed universe with
Ω = Ωm + ΩΛ > 1. Such a universe may exhibit very interesting behavior, depending of the values
of Ωm,0 and ΩΛ,0 (See fig. 6 and 8). As H2(t) should be positive (otherwise it would be unphysical),
Some combination of (Ωm,0,ΩΛ,0, a(t)) will not be allowed.

-

Figure 6: Universe evolution depending on Ωm and ΩΛ, in the plane (Ωm, ΩΛ).
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2.5.1 Matter and Λ for a flat Universe

In that case, Ω = Ωm + ΩΛ = 1 and the Friedmann equation becomes

H2(t)

H2
0

=
Ωm,0

a3
+ ΩΛ,0 =

Ωm,0

a3
+ (1− Ωm,0)

The scale factor a(t) is:

a(t) =

[√
Ωm,0

1− Ωm,0
sinh

(
3H0

√
1− Ωm,0

2
t

)]2/3

And the age of the Universe,

t0 =
2

3H0

1√
1− Ωm,0

argsinh

(√
1− Ωm,0

Ωm,0

)
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Figure 7: Left: evolution of the scale factor a(t) for a flat universe for different values of Ωm and ΩΛ. Right:
age t0 of a flat universe with Ωm + ΩΛ = 1 as a function of Ωm.
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Figure 8: Evolution of the scale factor a(t) depending on Ωm and ΩΛ, in the plane (Ωm, ΩΛ).
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3 The Benchmark Model (aka Concordance Model, aka ΛCDM)

It seems that our Universe is flat (k = 0, Ω0 = 1). In early times, it was dominated by radiation,

a(t) '
(

2
√

Ωr,0H0t
)1/2

[a� arm]

Until the radiation-matter equality arount a ' arm = Ωr,0/Ωm,0 ' 2.8× 10−4. It was then dominated
by matter,

a(t) '
(

3

2

√
Ωm,0H0t

)2/3

[a� arm]

In the next era, cosmological constant dominates. This era starts around amΛ = (Ωm,0/ΩΛ,0)1/3. Then
the scale factor will increase exponentially,

a(t) ' amΛ exp
(√

ΩΛ,0H0t
)

[a� amΛ]

Our Universe : recipe

photons Ωγ,0 ' 5.0× 10−5

neutrinos Ων,0 ' 3.4× 10−5

total radiation Ωr,0 ' 8.4× 10−5

baryonic matter Ωb,0 ' 0.04

non-baryonic matter Ωdm,0 ' 0.26

total matter Ωm,0 ' 0.3

cosmological constant ΩΛ,0 ' 0.7

Epochs

radiation-matter equality arm ' 2.8× 10−4 trm ' 4.7× 104 yr
matter-Λ equality amΛ ' 0.75 tmΛ ' 9.8 Gyr
now a0 = a(t0) = 1 t0 ' 13.5 Gyr

13
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Figure 9: Our Universe different eras.
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