

Master NPAC Cosmology – Lesson 3

Academic Year 2016–2017

Problems

Q1— Redo the calculations for the various universe models listed in lesson 3.

Q2 — Calculate the age of a critical universe ($\Omega_0 = \Omega_{m,0} + \Omega_{\Lambda,0} = 1$) in the limit $\Omega_{\Lambda,0} \ll \Omega_{m,0}$. Verify that for $\Omega_{\Lambda,0} > 0$, the age you obtain is larger than the age of a universe with $\Omega_{\Lambda,0} = 0$.

Q3 — Consider an open universe ($\Omega_0 \leq 1$). Show that if $\Omega_{\Lambda,0} = 0$ all of the universe will eventually come within our horizon. Show that if $\Omega_{\Lambda,0} > 0$ the horizon will approach a finite limit beyond which we will never see.

Q4 — (Exam of 2015-02-04) Consider a closed universe which contains only non relativistic matter: $\Omega_0 = \Omega_{m,0} > 1$.

- *(i)* Describe briefly the properties of such a universe, its curvature, and its dynamics (a drawing may help).
- (*ii*) Write the Friedmann equation for this universe (with the convention $a(t_0) = 1$, $R(t) = R_0 a(t)$). Compute the value a_{max} of the scaling factor a at maximum expansion.
- (iii) Show that H_0 , Ω_0 and the current universe curvature radius R_0 are linked by:

$$R_0 = \frac{c}{H_0} \frac{1}{\sqrt{\Omega_0 - 1}}$$

- (*iv*) Calculate the present horizon d_{hor} and χ_{hor} . What fraction of the universe is presently within the horizon? Show that at the moment of maximum expansion the horizon includes the entire universe, *i.e.* $\chi_{\text{hor}}(a_{\text{max}}) = \pi$.
- (*v*) Verify that the evolution of the universe may be described by the following parametric equations:

$$a(\eta) = A (1 - \cos \eta)$$
$$t(\eta) = B (\eta - \sin \eta)$$

Give the expression of *A* and *B* as functions of H_0 and Ω_0 . What is the value of η at maximum expansion? Describe briefly the resulting dynamics.

(vi) Show that the age of the universe at maximal expansion is:

$$t(a_{\max}) = \frac{\pi}{2H_0} \frac{\Omega_0}{(\Omega_0 - 1)^{3/2}}$$

(vii) At some time $t_1 > t(a_{\text{max}})$ during the contraction phase of this universe, an astronomer named Edwin Elbbuh discovers that all nearby galaxies have blueshifts ($-1 \le z < 0$) proportional to their distance ; he measures as well $H_1 < 0$ and $\Omega_1 > 1$. Knowing $H_1 < 0$ and Ω_1 , how much time remains between t_1 and the final Big Crunch at $t = t_{\text{crunch}}$?

Hints:

$$\int_{A}^{B} \frac{\mathrm{d}x}{\sqrt{x(1-x)}} = \left[\arcsin(2x-1)\right]_{A}^{B} \qquad x = \frac{\Omega_{0}-1}{\Omega_{0}} \times a$$

Q 5 — Some cosmologists speculate that the universe may contain a quantum field called "quintessence", which has a positive energy density and a negative equation-of-state parameter w. Let suppose that we are in a spatially flat universe, containing only matter ($\Omega_{m,0} \leq 1$) and quintessence with w = -1/2 and $\Omega_{Q,0} = 1 - \Omega_{m,0}$. At what scale a_{mQ} will the energy density of quintessence and matter be equal? Solve the Friedmann equation to find a(t) for this universe. What is a(t) when $a \ll a_{mQ}$? and when $a \gg a_{mQ}$? What is the current age of this universe, as a function of H_0 and $\Omega_{m,0}$?