Master NPAC
 Cosmology - Lesson 4

Academic Year 2016-2017

Problems

Q1 - From $T_{\mathrm{CMB}}=2.725 \mathrm{~K}$, compute the reduced photon density today $\Omega_{\gamma, 0} h_{100}^{2}$. where

$$
h_{100}=\frac{H_{0}}{100 \mathrm{~km} \cdot \mathrm{~s}^{-1} \cdot \mathrm{Mpc}^{-1}} .
$$

You might need:

$$
\int_{0}^{\infty} \frac{x^{3}}{e^{x}-1} \mathrm{~d} x=\frac{\pi^{4}}{15}
$$

For this question, give a literal expression of $\Omega_{\gamma, 0} h_{100}^{2}$.
Q 2 - Using $\Omega_{m, 0} h_{100}^{2}=0.11$ and $\Omega_{\gamma, 0} h_{100}^{2}=2.5 \times 10^{-5}$, evaluate the scale factor $a_{\gamma m}$ and the redshift at which matter and photons had the same energy density.

Q3 - What is the comoving horizon size at this redshift?
Q4 - Calculate the temperature T_{ν} and the number density n_{ν} of the relic neutrinos. Deduce $\Omega_{r, 0}=$ $\Omega_{\gamma, 0}+\Omega_{\nu, 0}$, and the $a_{r m}$ scale factor when matter and radiation had the same energy density. Assume 3 types of neutrinos, and that

$$
\begin{gathered}
\frac{T_{\nu}}{T_{\gamma}}=\left(\frac{4}{11}\right)^{1 / 3} \quad \frac{n_{\nu}}{n_{\gamma}}=\frac{3}{4} \frac{g_{\nu}}{g_{\gamma}}\left(\frac{T_{\nu}}{T_{\gamma}}\right)^{3} \quad \frac{\varepsilon_{\nu}}{\varepsilon_{\gamma}}=\frac{7}{8} \frac{g_{\nu}}{g_{\gamma}}\left(\frac{T_{\nu}}{T_{\gamma}}\right)^{4} \\
g_{\nu}=1 \quad g_{\gamma}=2
\end{gathered}
$$

