MASTER NPAC- COSMOLOGY

EXAM

2016-02-02 9h30 - 12h30

Documents, books, computers and mobile phones are forbidden.
Pocket calculators are allowed.
Your answers may be written in English or in French, as you prefer.

1. Friedmann equations

1.1 - Give the Friedmann equations. We will use the convention in which the scaling factor $a(t)$ is dimensionless, and $a\left(t_{0}\right)=1$ (t_{0} is now). Explain the relation between a and z.
1.2 - Using the hypothesis that the expansion is an adiabatic process, show that, for a fluid of energy density $\varepsilon(t)=\rho(t) c^{2}$ and pressure p :

$$
\dot{\varepsilon}+3 \frac{\dot{a}}{a}(\varepsilon+p)=0
$$

1.3 - For a given fluid, with an equation of state $p=w \varepsilon=w \rho c^{2}$, deduce the evolution of $\varepsilon(t)$ as a function of $a(t)$. How will the energy density evolve for dust (i.e. non-relativistic matter)? For radiation (i.e. relativistic matter)? For a cosmological constant Λ ?
1.4 - What is the "critical density" $\varepsilon_{c}=\rho_{c} c^{2}$? Rewrite the Friedmann equation with the reduced densities $\Omega_{X}=\varepsilon_{X} / \varepsilon_{c}=\rho_{X} / \rho_{c}$.
1.5 - Give and justify the general expression for the current age t_{0} of the universe for a mixing of matter, radiation and a cosmological constant (do not try to integrate at this point).
1.6 - Compute the age t_{0} of a flat universe dominated by: (i) matter; (ii) radiation; (iii) a cosmological constant Λ.
1.7 - Compute the age t_{0} of a flat universe dominated by matter and dark energy ($\Omega_{0}=\Omega_{m, 0}+\Omega_{\Lambda, 0}=$ 1). Give a literal expression (without integrating), and then using the following hint, the explicit expression of the age t_{0}.

Hints:

$$
\int_{A}^{B} \frac{\mathrm{~d} x}{\sqrt{x^{2}+K / x}}=\left[\frac{2}{3} \ln \left(2\left[x^{3 / 2}+\sqrt{K+x^{3}}\right]\right)\right]_{A}^{B} \quad \operatorname{argsinh} x=\ln \left(x+\sqrt{1+x^{2}}\right)
$$

Where $\ln x$ is the natural logarithm (logarithme néperien).

2. Variation of the redshift with time : $\mathrm{d} z / \mathrm{d} t_{0}$

Lets consider a source (a galaxy) at rest in comoving coordinates, at a redshift $z=a\left(t_{0}\right) / a\left(t_{e}\right)-1$, where t_{e} is the time of light emission and t_{0} is the observation time (now, $a\left(t_{0}\right)=1$). We would like to determine how this redshift changes over the present time t_{0}, and estimate if this redshift variation could be detected, by measuring the redshift change of objects over a few years.
2.1 - Differentiate the expression of the redshift z with respect to the current time t_{0} (be careful: photons received on Earth at $t_{0}+\mathrm{d} t_{0}$ have been emitted at $t_{e}+\mathrm{d} t_{e}$: emission time t_{e} is a function of the reception time t_{0}). Show that

$$
\frac{\mathrm{d} z}{\mathrm{~d} t_{0}}=(1+z) H\left(t_{0}\right)-(1+z) H\left(t_{e}\right) \times \frac{\mathrm{d} t_{e}}{\mathrm{~d} t_{0}}
$$

2.2 - Recall the expression for the spacetime interval $\mathrm{d} s^{2}$ in the Friedman-Lemaître-RobertsonWalker (FLRW) metric. Express it with the comoving coordinates $\widetilde{\mathbf{x}}: x^{\mu}=(c t, \chi, \theta, \varphi)$, and also with the $(c t, r, \theta, \varphi)$ coordinates where $r=S_{k}(\chi)$,

$$
S_{k}(\chi)= \begin{cases}\sin \chi & k=+1 \\ \chi & k=0 \\ \sinh \chi & k=-1\end{cases}
$$

where χ is the (dimensionless) comoving distance.
2.3-Express $\mathrm{d} s^{2}$ for a photon emitted by the galaxy (at $\left(t=t_{e}, \chi_{\text {gal }}, \theta_{\text {gal }}, \varphi_{\text {gal }}\right)$) and arriving later on earth (at $\left(t=t_{0}, \chi=0, \theta_{\text {gal }}, \varphi_{\text {gal }}\right)$). Deduce $\mathrm{d} \chi$ and the expression of the comoving distance of the galaxy $\chi_{\text {gal }}$.
2.4 - Using the fact that the comoving distance $\chi_{\text {gal }}$ of the galaxy is constant, show that

$$
\frac{\mathrm{d} t_{e}}{\mathrm{~d} t_{0}}=\frac{a\left(t_{e}\right)}{a\left(t_{0}\right)}
$$

(Hints: differentiate $\chi_{\text {gal }}$ relatively to t_{0})
2.5 - Using the previous results, give $\mathrm{d} z / \mathrm{d} t_{0}$ as a function of z, t_{0} and $H(z)$.
2.6 - For a flat universe with $\Omega_{m, 0}=0.3$ and $\Omega_{\Lambda, 0}=0.7$, evaluate (roughly) the redshift change Δz at $z=1$ over 10 years (assume $H_{0}^{-1} \simeq 10^{10}$ years). Estimate the change in term of the apparent recession speed $c z$ and its variation $c \Delta z$. Comment the result.

3. Matter perturbations in a flat matter-dominated universe

3.1 - Write the Friedmann equation for a flat, matter-dominated universe.
3.2 - Solve for $a(t)$, expliciting initial conditions.
3.3 - Derive the relation between the (average) matter density and t.
3.4 - Express $H(t)$.

To first order of perturbations, the evolution of a density perturbation in Newtonian dynamics follows:

$$
\ddot{\delta}+2 H(t) \dot{\delta}=4 \pi G \bar{\rho} \delta
$$

where $\delta \equiv \rho / \bar{\rho}-1, \bar{\rho}$ denotes the average density and $\dot{\delta}=\mathrm{d} \delta / \mathrm{d} t$. The above equation assumes that pressure is negligible.
3.5 - Assuming that the universe is flat and matter-dominated, substitute $\mathrm{H}(\mathrm{t})$ and $\bar{\rho}(t)$ in the above equation.
3.6 - With the anzatz $\delta \propto t^{n}$, solve the differential equation for n.
3.7 - Comment the results.

4. The Cosmic Microwave Background

4.1 - Explain briefly the nature and the origin of the Cosmic Microwave Background (CMB).
4.2 - Describe briefly how the curve of figure 1 is derived from a measured CMB temperature map on the celestial sphere $T(\theta, \phi)$. Derive from this curve an order of magnitude of the variance or (r.m.s) of $T(\theta, \phi)$.

Figure 1: $C M B$ spectrum. Logarithmic x-scale up to $\ell=50$; linear at higher ℓ; all points with error bars. The red line is the Planck best-fit primordial power spectrum (cf. Planck+WP+highL in Table 5 of Planck-2013-XVI, A\&A 571, A16 (2014)). From the Planck Collaboration.
4.3 - Give a rough relation between ℓ values and real angles on the sky. Where are the large angular scales? Where are the small angular scales?
4.4-One can depict this curve as

1. a plateau at low ℓ values;
2. a series of peaks at higher ℓ;
3. a global enveloppe damping the high ℓ.

Give a short description of the physics involved in each of these features, and if applicable the relevant parameters.

5. Inflation

5.1 - During a period of inflation, what is the sign of \ddot{a} ? Does a cosmological constant give rise to inflation, and if so, is it a good model for an inflationary phase early in the history of the universe? (Explain your answer.)
5.2 - How does inflation solve the horizon problem? Draw a plot of the comoving scale factor as a fun ction of the scale factor to explain your answer. How long should inflation last approximately?
5.3 - Show that the acceleration equation

$$
\begin{equation*}
\dot{H}=-4 \pi G \dot{\phi}^{2} \tag{1}
\end{equation*}
$$

is a consequence of the Friedman equation as well as the continuity equation, respectively

$$
\begin{equation*}
H^{2}=\frac{8 \pi G}{3}\left(\frac{1}{2} \dot{\phi}^{2}+V(\phi)\right), \quad \ddot{\phi}+3 H \dot{\phi}+\frac{\mathrm{d} V}{\mathrm{~d} \phi}=0 \tag{2}
\end{equation*}
$$

What is the quantity $V(\phi)$ appearing in these equations?

The slow roll parameters were defined in lectures as:

$$
\begin{equation*}
\epsilon_{V} \equiv \frac{M_{\mathrm{Pl}}^{2}}{2}\left(\frac{V_{\phi}}{V}\right)^{2} \quad \eta_{V} \equiv M_{\mathrm{Pl}}^{2}\left(\frac{V_{\phi \phi}}{V}\right) \tag{3}
\end{equation*}
$$

where $V_{\phi}=\mathrm{d} V / \mathrm{d} \phi, V_{\phi \phi}=\mathrm{d}^{2} V / \mathrm{d} \phi^{2}$ and

$$
M_{\mathrm{Pl}}=\frac{1}{\sqrt{8 \pi G}}
$$

For simplicity in the following we work in units in which $M_{\mathrm{Pl}}=1$. Also, let N denote the number of e-folds before the end of inflation:

$$
N(t)=\ln \frac{a_{\mathrm{end}}}{a(t)}
$$

where $a_{\text {end }}$ is the scale factor at the end of inflation.
5.4 - Why are ϵ_{V} and η_{V} called "slow roll" parameters? Which approximations must be made to obtain them from equations (1)-(2)? Explain why inflation requires $\epsilon_{V} \ll 1$ and $\eta_{V} \ll 1$.
5.5 - For the remainder of this exercise we consider the potential

$$
\begin{equation*}
V(\phi)=\alpha \phi^{2} \tag{4}
\end{equation*}
$$

where α is a constant. What are the dimensions of α ?
5.6 - Calculate the slow-roll parameters, and determine the value of ϕ at the end of inflation.
5.7 - Show that, in the slow-roll approximation (that is, to first order in slow-roll parameters),

$$
N \simeq \int_{\phi_{\text {end }}}^{\phi} \frac{d \phi}{\sqrt{2 \epsilon_{V}}}
$$

Calculate the number N of e-folds between t_{i} where the field takes the value ϕ_{i}, and the end of inflation.
5.8 - Determine $\phi(t)$ and $a(t)$ in the slow-roll approximation.

