Academic Year 2015-2016
Master NPAC

MASTER NPAC- COSMOLOGY
ExAM
2016-02-02 9h30 — 12h30

Documents, books, computers and mobile phones are forbidden.
Pocket calculators are allowed.

Your answers may be written in English or in French, as you prefer.

1. Friedmann equations

1.1 — Give the Friedmann equations. We will use the convention in which the scaling factor a(t) is
dimensionless, and a(tp) = 1 (to is now). Explain the relation between a and z.

1.2 — Using the hypothesis that the expansion is an adiabatic process, show that, for a fluid of energy
density £(t) = p(t)c? and pressure p :

é+3%(€+p):o

1.3 — For a given fluid, with an equation of state p = we = wpc?, deduce the evolution of &(t) as
a function of a(t). How will the energy density evolve for dust (i.e. non-relativistic matter)? For
radiation (i.e. relativistic matter)? For a cosmological constant A?

1.4 — What is the “critical density” e. = p.c? ? Rewrite the Friedmann equation with the reduced
densities Qx = ex /e = px/pe-

1.5 — Give and justify the general expression for the current age ¢ of the universe for a mixing of
matter, radiation and a cosmological constant (do not try to integrate at this point).

1.6 — Compute the age t of a flat universe dominated by: (i) matter; (ii) radiation; (iii) a cosmological
constant A.

1.7 — Compute the age ( of a flat universe dominated by matter and dark energy (o = Q, 0+Qa,0 =
1). Give a literal expression (without integrating), and then using the following hint, the explicit
expression of the age to.

Hints:
B
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Where In z is the natural logarithm (logarithme néperien).

argsinhx = In (m +V1+ x2>
A



Academic Year 2015-2016 Cosmology

2. Variation of the redshift with time : dz/d¢

Lets consider a source (a galaxy) at rest in comoving coordinates, at a redshift = = a(ty)/a(te) — 1,
where ¢, is the time of light emission and ¢, is the observation time (now, a(tg) = 1). We would like
to determine how this redshift changes over the present time ¢(, and estimate if this redshift variation
could be detected, by measuring the redshift change of objects over a few years.

2.1 — Differentiate the expression of the redshift z with respect to the current time ¢, (be careful:
photons received on Earth at ¢y 4 d¢; have been emitted at ¢, + dt.: emission time . is a function of
the reception time (). Show that

dz dt.
— =1 H —(1 H(t,) x —
T = (L 2 H ) = (1 4+ 2)H(t) x 3

2.2 — Recall the expression for the spacetime interval ds® in the Friedman-Lemaitre-Robertson-
Walker (FLRW) metric. Express it with the comoving coordinates x : z# = (ct, x, 0, ¢), and also
with the (ct,r, 0, ¢) coordinates where r = Si(x),

siny k=+1
Sk(x) =4 X k=0
sinhy k=-1

where  is the (dimensionless) comoving distance.
2.3 — Express ds? for a photon emitted by the galaxy (at (t = ¢, Xgal, Ugal; ¢ga1)) and arriving later on

earth (at (t = to,x = 0,0gal, Pga1))- Deduce dx and the expression of the comoving distance of the
galaxy Xgal-

2.4 — Using the fact that the comoving distance .1 of the galaxy is constant, show that

dte  alte)

dty  afto)

(Hints: differentiate g, relatively to ¢o)
2.5 — Using the previous results, give dz/dty as a function of z, ty and H(z).

2.6 — For a flat universe with Q,, o = 0.3 and Q24 o = 0.7, evaluate (roughly) the redshift change Az at
z = 1 over 10 years (assume H; ' ~ 10'? years). Estimate the change in term of the apparent recession
speed cz and its variation cAz. Comment the result.

3. Matter perturbations in a flat matter-dominated universe

3.1 — Write the Friedmann equation for a flat, matter-dominated universe.
3.2 — Solve for a(t), expliciting initial conditions.

3.3 — Derive the relation between the (average) matter density and ¢.

3.4 — Express H (t).

To first order of perturbations, the evolution of a density perturbation in Newtonian dynamics fol-
lows:
d+2H(t)d = 4rGpd
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where § = p/p — 1, p denotes the average density and § = dd/dt. The above equation assumes that

pressure is negligible.
3.5 — Assuming that the universe is flat and matter-dominated, substitute H(t) and p(t) in the above

equation.
3.6 — With the anzatz § o t”, solve the differential equation for n.

3.7 — Comment the results.

4. The Cosmic Microwave Background

4.1 — Explain briefly the nature and the origin of the Cosmic Microwave Background (CMB).

4.2 — Describe briefly how the curve of figure 1 is derived from a measured CMB temperature map
on the celestial sphere T'(6, ¢). Derive from this curve an order of magnitude of the variance or (r.m.s)

of T'(0, ¢).
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Figure 1: CMB spectrum. Logarithmic x-scale up to ¢ = 50; linear at higher ¢; all points with error
bars. The red line is the Planck best-fit primordial power spectrum (cf. Planck+WP+highL in Table 5

of Planck-2013-XVI, A&A 571, A16 (2014)). From the Planck Collaboration.

4.3 — Give a rough relation between ¢ values and real angles on the sky. Where are the large angular

scales? Where are the small angular scales?

4.4 — One can depict this curve as

1. a plateau at low ¢ values;

2. aseries of peaks at higher ¢;
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3. a global enveloppe damping the high ¢.

Give a short description of the physics involved in each of these features, and if applicable the rele-
vant parameters.

5. Inflation

5.1 — During a period of inflation, what is the sign of @? Does a cosmological constant give rise to
inflation, and if so, is it a good model for an inflationary phase early in the history of the universe?
(Explain your answer.)

5.2 — How does inflation solve the horizon problem? Draw a plot of the comoving scale factor as a
fun ction of the scale factor to explain your answer. How long should inflation last approximately?

5.3 — Show that the acceleration equation
H = —47G¢? (1)

is a consequence of the Friedman equation as well as the continuity equation, respectively

8tG (1. . .dv
2 _ Py av o _
H* = 3 <2¢> —|—V(q§)>, ¢+3H¢+d¢ 0 (2)
What is the quantity V' (¢) appearing in these equations?
The slow roll parameters were defined in lectures as:
M3, (V)2 v,

where V; = dV/d¢, Vi = d*V/d¢? and

1
V8rG'

For simplicity in the following we work in units in which Mp; = 1. Also, let N denote the number of
e-folds before the end of inflation:

Mp) =

Qend
N(t) =1In at)

where a.png is the scale factor at the end of inflation.

5.4 — Why are ey and 7y called “slow roll” parameters? Which approximations must be made to
obtain them from equations (1)-(2)? Explain why inflation requires ey < 1 and 7y < 1.

5.5 — For the remainder of this exercise we consider the potential

V(g) = a¢® 4)
where « is a constant. What are the dimensions of a?

5.6 — Calculate the slow-roll parameters, and determine the value of ¢ at the end of inflation.

4/5



Cosmology Academic Year 2015-2016

5.7 — Show that, in the slow-roll approximation (that is, to first order in slow-roll parameters),

¢ d
N ~ 4 .
¢end v QEV

Calculate the number N of e-folds between t; where the field takes the value ¢;, and the end of
inflation.

5.8 — Determine ¢(t¢) and a(t) in the slow-roll approximation.
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