

SMC395

TECHNICAL DATA

Violet LED, SMD

SMC395 are InGaN LEDs mounted on a ceramic SMD package and sealed with silicone resin for damp proof. On forward bias, it emits a radiation of typical 8 mW at a peak wavelength of 395 nm.

Specifications

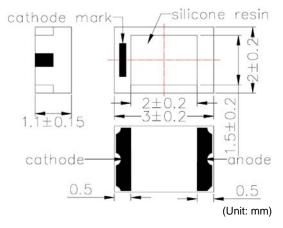
- Structure: InGaN
- Peak Wavelength: typ. 395 nm
- Optical Output Power: typ. 8 mW
- Package: Ceramic SMD, silicon resin

Absolute Maximum Ratings (T_a=25°C)

Item	Symbol	Value	Unit
Power Dissipation	PD	180	mW
Forward Current	I _F	50	mA
Reverse Voltage	V _R	5	V
Operating Temperature	T _{opr}	-20 +80	°C
Storage Temperature	T _{stg}	-30 +80	°C
Soldering Temperature *	T _{sol}	255	°C

* must be completed within 5 seconds

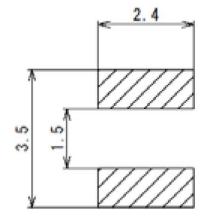
Electro-Optical Characteristics

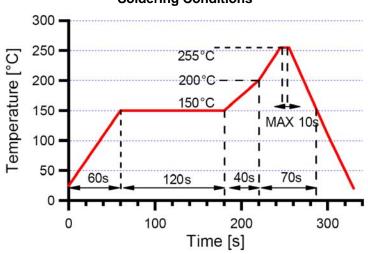

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Forward Voltage	V _F	I _F = 20 mA	-	3.5	4.0	V
Reverse Current	I _R	$V_R = 5 V$	-	-	10	μA
Total Radiated Power	Po	I _F = 20 mA	4	8	-	mW
Brightness	I _V	I _F = 20 mA	4	8	-	mcd
Peak Wavelength	λ _P	I _F = 20 mA	385	395	405	nm
Half Width	Δλ	I _F = 20 mA	-	15	-	nm
Viewing Half Angle	$\Theta_{1/2}$	I _F = 20 mA	-	±55	-	deg.

Brightness is measured by Tektronix J-16

Total Radiated Power is measured by S3584-08

Notes


- Do not view directly into the emitting area of the LED during operation!
- The above specifications are for reference purpose only and subjected to change without prior notice. •



Recommended Land Layout (Unit: mm)

1. Soldering Conditions

- DO NOT apply any stress to the lead particularly when heat.
- After soldering the LEDs should be protected from mechanical shock or vibration until the LEDs return to room temperature.
- When it is necessary to clamp the LEDs to prevent soldering failure, it is important to minimize the mechanical stress on the LEDs.

Soldering Conditions

2. Static Electricity

- The LEDs are very sensitive to Static Electricity and surge voltage. So it is recommended that a wrist band or an anti-electrostatic glove be used when handling the LEDs.
- All devices, equipment and machinery must be grounded properly. It is recommended that precautions should be taken against surge voltage to the equipment that mounts the LEDs.

