

A test bench to characterize holographic gratings for AuxTel at LPNHE

Laurent Le Guillou (Sorbonne Université / LPNHE)

LSST DESC Calibration Workshop LPNHE, Paris, 2018-10-02

LAL : Sylvie Dagoret-Campagne, Marc Moniez, Jérémy Neveu, Olivier Perdereau LPNHE : Pierre Antilogus, Pierre Astier, Marc Betoule, Patrick Ghislain, Claire Juramy-Gilles, Laurent Le Guillou, Philippe Repain, Eduardo Sepulveda, Arthur Vattier

Talk outline

- Context : Holographic gratings for AuxTel (HOE)
- Optical setup : λ -tunable convergent beam
- Integration within the LPNHE testbench for LSST CCD
- Focusing tests : Thorlabs grating vs holograms
- Measuring throughput / diffraction efficiency for each grating
- Conclusions & perspectives

Holographic gratings for AuxTel

- Goal : measure atmospheric absorption by extracting slit-less spectra of standard stars
- Fast switching between imaging / spectroscopy modes
- Optical element **parallel to the CCD plane** to be put in one slot of the **gratings wheel**
- Standard gratings :
 - Defocus with the diffraction angle
 - Not designed for a convergent beam
- Proposal : a tailored Holographic Grating
 - All wavelengths are focused (1st order)
 - Limited distorsions
- Prototypes tested at CTIO par M. Moniez *et al.*
- Needed : a testbench to characterize the produced holograms

Convergent beam : optical setup

Convergent beam : optical setup

Convergent beam : optical setup

SDESC Dark Energy Science Collaboration

- Source : integrating sphere
- Fiber fed :
 - Lamps : incandescent, LEDs, HgAr
 - Continuum (QTH) + monochromator
- Exit = mirror focal point :
 - → pinhole (20 microns)
 - → expected image 40 microns

Laurent Le Guillou (Sorbonne Université / LPNHE) DESC LSST Calibration Workshop – LPNHE, Paris, Oct 2nd-5th, 2018 7 / 21

Focusing

Dark Energy Science Collaboration

Fichier	Édition	Affichage	Fenêtre	Bin	Zoom	Scale	Couleur	Région	WCS	Analyse	Aide	
---------	---------	-----------	---------	-----	------	-------	---------	--------	-----	---------	------	--

Fichier		holo-seq-	014-20)mu-0004	74.fits										
Objet														Y	
Value		38													
WCS	x		J	1										L→ x	
Physique	Х	307.50	00 Y	877.0	000										
Image	Х	307.50	00 1	877.0	000										
Fenêtre 1	x	2.000)	0.0	00 °	,									
fichier		édition	af	ichage	fer	nêtre	bin	zoom	S	cale	couleur	région	WCS	analyse	aide
nouveau		rgb	3d	suppr	mer	effa	cer	single	tile	cligi	notement	premier	prev	suivant	dernier

LSST AuxTel Hologram tests Hole 20 microns Light injection setup (focus) moving 3 turns/step (L. Le Guillou, 2018-02-23, 19h)

					<u> </u>			-	
54	76	99	121	144	166	188	211	233	

Baffling & shutter

- Shutter : triggered by the LSST REB (« SHU » line)
- Beam : f/15 to f/...

(diaphragm)

Shutter **4** diaphragm

Integration within the CCD testbench

Laurent Le Guillou (Sorbonne Université / LPNHE) DESC LSST Calibration Workshop – LPNHE, Paris, Oct 2nd-5th, 2018 11 / 21

Integration within the CCD testbench

Cooled photodiode (CLAP)

CCD E2V-250

Optical table

Tunable convergent beam (shutter)

XYZ motorized stage (0.4 micron resol.)

Laurent Le Guillou (Sorbonne Université / LPNHE) DESC LSST Calibration Workshop - LPNHE, Paris, Oct 2nd-5th, 2018 12/21

Integration within the CCD testbench

- Beam focused on the CCD E2V-250
- Frames read using the LSST REB
- Each grating to be characterized is mounted on a **3D printed removable support** → easy to exchange gratings on the setup
- The illuminator system is fiber fed :
 - Liquid fiber bundle fed by a monochromator and a continuum lamp \rightarrow wavelength scans
 - Hg(Ar) PenRay lamp (Oriel 6035)
 - → focusing performance
- XYZ motorized mount (0.4 microns resolution) :
 - Precise positioning of the grating in the beam
 - Throughput / diffraction efficiency : obtained by taking frames while moving the grating in / out of the beam

Test with Thorlabs GT50-03 grating

- Grating : blazed transmission grating, GT50-03, 300 g/mm
- Light source : PenRay Hg(Ar) (Oriel 6035)
- Defocusing with increasing wavelength clearly visible
- Our PSF is not circular, as we already know
- Small enough compared to AuxTel expected seeing

Laurent Le Guillou (Sorbonne Université / LPNHE) DESC LSST Calibration Workshop – LPNHE, Paris, Oct 2nd-5th, 2018 14 / 21

Focus : GT50-03 vs. hologr. HoloPhAg

Exactly the same optical setup, and the same physical position for both gratings

3	E+04	4E+04	5E+04	6E+04	7E+04	8E+04
Source: HgAr (Oriel 6035)	Grating: prot	o HoloPhAg				
*		· · •	* *			

GT50-03 vs. hologram HoloPhAg

SSI

Throughput (efficiency)

- Scanning in wavelength with QTH lamp and monochromator ;
- XYZ mount : grating in the beam / out of the beam : ON / OFF CCD frames

DESC LSST Calibration Workshop - LPNHE, Paris, Oct 2nd-5th, 2018

Gratings diffraction efficiency: analysis

- Scanning in wavelength with QTH lamp and monochromator ;
- ON / OFF CCD frames
- Aut. detection of orders 0, 1, 2
- Fitting spot positions
- Estimating the **total flux** (box) for each order (subtr. backgd)

 $\phi_{\text{order 1}}(\text{grating})$

 $\phi_{\text{order 0}}(\text{no grating})$

• Estimating the Ratio :

Diffr. efficiency for Thorlabs GT50-03

Ratio : order-1 (grating) / order-0 (no grating)

Laurent Le Guillou (Sorbonne Université / LPNHE) DESC LSST Calibration Workshop – LPNHE, Paris, Oct 2nd-5th, 2018 19 / 21

Diffr. efficiency for HoloPhAg proto.

- Very preliminary result (yesterday)
- QTH lamp bulb **is dying** ; no light
- No flux in UV/blue, will use powerful (500 W) Hg(Ne) instead.
 - \rightarrow Still some work to do...

Laurent Le Guillou (Sorbonne Université / LPNHE) DESC LSST Calibration Workshop – LPNHE, Paris, Oct 2nd-5th, 2018 20 / 21

Conclusion : Work in Progress

- A dedicated testbench built at LPNHE to characterize holographic gratings, candidates for the AuxTel instrument
- Validated with an ordinary grating (GT50-03) and holographic prototypes used at CTIO
- Data analysis to be completed
- Will be used to characterize all the holographic prototypes
- Goal : measuring throughput / diffraction efficiency for each grating
- To be continued...