
DRAFT

Document #

LCA-XXXXX
Date

2017-06-18
Status

DRAFT 2

Author(s)

Laurent Le Guillou, Claire Juramy, Eric Aubourg, Stefano Russo,
Eduardo Sepulveda, Pierre Antilogus

Subsystem/Office

Systems Integration, Camera Control, Electronics

Document Title

LSST REB Sequencer Language – User Manual

Change History Log

0.1 2017-04-18 First draft

0.2 2017-06-18 Second draft

DRAFT

2

DRAFT
Contents

1 Introduction 5

1.1 Purpose and scope of this document . 5

1.2 Applicable Documents and Reference Documents . 5

1.3 Acronyms . 6

2 Language description 7

2.1 Sequencer file structure . 7

2.2 Including definitions from other files: [includes] . 8

2.3 Sequencer global parameters: [constants] . 8

2.4 Sequencer output lines: [clocks] . 9

2.5 The elementary clocking sequences: [functions] . 9

2.6 Writing the sequencer program: [mains] and [subroutines] 10

2.6.1 Program instructions . 10

2.6.2 Calling a sequencer function: direct and indirect addressing 11

2.6.3 Jumping to a subroutine: direct and indirect addressing 13

2.6.4 Defining a main program / auxiliary subroutine 14

2.6.5 Indirect addressing: pointers . 15

2.6.6 Advanced sequencer programming . 16

2.7 Sequencer trigger mechanism . 18

2.7.1 Main program pointer . 18

2.7.2 Triggers: [triggers] . 19

3 Sequencer examples 20

3.1 Simple sequencer . 20

3.2 Special flat sequence . 24

3.3 Reverse clocking to measure non-linearity . 25

4 Sequencer program compilation 28

4.1 Available compilers and tools . 28

4.1.1 CCS java classes . 28

4.1.2 Standalone python tools . 28

3

DRAFT

4.1.3 Low level acquisition tools . 28

4.2 Compilation process . 28

4.3 Compiled sequencer programs: file format . 29

4.4 Compiled program: complete example . 30

5 Language grammar 38

5.1 Basic language elements . 38

5.2 Mathematical expressions . 38

5.3 Included files . 39

5.4 Global parameters (“constants”) . 39

5.5 Clock lines . 39

5.6 Indirect addressing (“pointers”) . 39

5.7 Sequencer functions . 40

5.8 Subroutines and main programs . 41

5.9 Triggers . 42

5.10 Sequencer file structure . 43

4

DRAFT
1

Introduction

1.1 Purpose and scope of this document

The aim of this document is the description of the REB sequencer programming language, which
is the high level language used to define clocking sequences and sequencer programs for the REB
FPGA.

This programming language has been developped to facilitate the definition of the REB clocking
sequences for all the CCD of the LSST camera, based on the features provided by the REB FPGA (see
[7] for a complete description of the REB FPGA programming interface). As the REB FPGA offers a
highly flexible programming interface, the dedicated programming language described hereby aims
to offer a human readable version of this interface, while retaining all of its possibilities.

The sequencer language allows to define simple CCD clocking sequences to clear the CCD / take
a single full frame / take a window / and so on; as it is very flexible, it also allows to define more
exotic sequences for calibrations and sensor testing, and is heavily used on the LPNHE sensor testing
facility, particularly for the optimization of the CCD clocking, and for various sensor tests.

The LSST Camera Control System (CCS) includes the needed tools to compile sequencer programs
written for LSST REB sequencer language, and to load them into the REB FPGA memory.

The LSST REB sequencer language is described in details in section 2; to complete this description,
several examples are provided in section 3. In section 4 the compilation process and the resulting
compiled sequencer file format – ready to be loaded into the REB FPGA memory – are discussed. For
reference, section 5 provides the formal grammar of the language in the Backus–Naur form (“BNF”).

1.2 Applicable Documents and Reference Documents

The following documents are applicable and form a part of this design document:

Ref # Document Number Document Title

[1] LCA-277 LSST Camera Conceptual Design Report
[2] LCA-10055 REB/DREB Specification and Design
[3] LCA-335 DAQ-SRT ICD
[4] LCA-336 DAQ-CCS ICD
[5] LCA-50 CCS Specification
[6] LCA-XXXXX ASPIC III Specification, Design & User Manual
[7] LCA-XXXXX The LSST REB 5 firmware: User Manual
[..] TBD TBD

5

DRAFT

1.3 Acronyms

Acronym Definition

BNL Brookhaven National Laboratory
CCD Charge-Coupled Device
CCS LSST Camera Control System
FPGA Field Programmable Gate Array
ICD Interface Control Document
LPNHE Laboratoire de Physique Nucleaire et des Hautes Energies
REB Raft Electronics Board
SLAC SLAC National Accelerator Laboratory
SRT Science Raft Tower
TBD To Be determined
TBR To Be Reviewed

6

DRAFT
2

Language description

The LSST REB sequencer language has been designed to offer an easy access to all the sequencer
programming features provided by the REB FPGA firmware (see [7]), in order to easily conceive
and optimize the clocking sequences for the LSST CCD standard read-out modes, but also for very
specific clocking sequences needed for sensor testing activities in the framework of the LSST project.

The elementary bricks of any sequencer program are short sequences of user-defined combinations
of output signals (32 output lines are available) and duration of these output configurations, called
“sequencer functions” or simply “functions” hereafter. Before doing any sequencer programming,
the user should define these elementary sequencer blocks: the way to do it is described below in
section 2.5.

More complex sequencer programs are then built by calling these elementary functions successively,
as many times as needed, in the user specified order. The user may structure its sequences by defining
several main sequencer programs and auxiliary subroutines, and, in each main program/subroutine,
by combining direct calls to elementary functions (CALL instruction), and calls to user-defined sub-
routines (JSR “jump to subroutine” instruction). The way to write sequencer programs is described
in details in section 2.6.

The syntax of the sequencer language is quite similar to an assembler language, where each ele-
mentary instruction is translated into one microprocessor elementary instruction opcode. The FPGA
instruction set is very limited, with only four instructions: CALL, JSR, RTS and END, and 4 address-
ing modes (see below in section 2.6.1). The sequencer language offers a few extra instructions and
advanced features akin to a preprocessor language, described in section 2.6.6.

2.1 Sequencer file structure

A sequencer program file is divided in several sections, each section indicated by a section marker
between brackets, and ending with an empty line. The section order is mandatory, but some sections
are optional. Here is the typical structure of a sequencer program file:

A comment (everything after a ’#’ is ignored)
[includes] # (optional) to includes definitions from other files

[...]

[constants] # global parameters, will be substituted at compilation
[...]

[clocks] # definition (naming) of the clock channels
[...]

7

DRAFT

[pointers] # (optional) indirect addressing of functions,
subroutines or repetition number
(for subroutines or functions)

[...]

[functions] # elementary sequencer functions definition
[...]

[subroutines] # (optional) subroutine definitions
[...]

[mains] # main programs definitions
[...]

[triggers] # (Acq v2.0 only) ’mains’ which could be synchronously
[...] # triggered by the LSST Camera Acquisition system.

2.2 Including definitions from other files: [includes]

The first section, “[includes]” is optional; it allows to give a list of other sequencer program files
to be included at compilation time. Files will be read and analysed in the provided order, before
analysing the current file: any definition may be overwritten and superseded by a later one. The user
has to be careful as duplicated definition may be overwritten.

[includes] # optional: to includes definitions from other files
../seqfiles/global_constants.seq
../seqfiles/CCD_E2V_constants.seq

2.3 Sequencer global parameters: [constants]

In order to group the specification of the sequencer parameters in one place, and to improve the
sequencer programs readability, it is possible (and advised) to define global parameters at the begin-
ning of the sequencer file, in the “[constants]” section. Constant values may be positive integers,
simple arithmetic expressions combining constants (already defined before) and integers, and du-
rations expressed either in seconds (“s”), milliseconds (“ms”), microseconds (“us”) or nanoseconds
(“ns”). In this later case, durations values will be converted at compilation time in FPGA clock cy-
cles, using the special constant “clockperiod” to do the conversion. If not specified, the “clockperiod”
default is 10 ns.

The global parameters definition should follow the syntax shown in the example below:

[constants] # will be substituted in the code at compilation time
DetectorCols: 576 # Total number of columns in a full readout
DetectorRows: 2048 # Total number of rows in a full readout
clockperiod: 10 ns # FPGA clock period (required)
TimeP: 5000 ns # Base time element of parallel transfers
BufferP: 2500 ns # Parallel transfer buffer time
RampTime: 320 ns # ASPIC ramp time
SegCols: 512 # Number of columns of the sensors
SerCols: 522 # Size of serial register
PreScan: SerCols - SegCols # Prescan pixels

8

DRAFT

2.4 Sequencer output lines: [clocks]

To simplify the sequencer programming, the clock output lines (or clock channels) may me named,
and the naming scheme is described in the “clocks” section of the sequencer file:

[clocks] # clock channels (output lines)
P1: 8 # Parallel clock 1
P2: 9 # Parallel clock 2
P3: 10 # Parallel clock 3
P4: 11 # Parallel clock 4
S1: 4 # Serial clock 1
S2: 5 # Serial clock 2
S3: 6 # Serial clock 3
RG: 7 # Serial reset clock
CL: 3 # ASPIC clamp
RST: 2 # ASPIC integrator reset
RD: 1 # ASPIC ramp-down integration
RU: 0 # ASPIC ramp-up integration
TRG: 12 # ADC sampling trigger
SOI: 13 # Start of image
EOI: 14 # End of image
SHU: 16 # Shutter TTL (for testing only)

This naming scheme should of course be adapted for each CCD type (E2V/ITL).

In the example above, output line 16 (“SHU”) is connected to a shutter controller, to command the
shutter on sensor testing facilities. This is only for testbench tests, The LSST camera shutter will not
be controlled through the REB boards.

2.5 The elementary clocking sequences: [functions]

The sequencer is divided in 16 user defined functions: each function generates a synchronous se-
quence of output signals. A sequencer program defines the execution order of the loaded functions.

The function is the basic element of the sequencer: it is defined by the user to generate a time sequence
of 32 output signals. Each function is divided into up to 16 time slices : each time slice is defined by
its duration and the states of the outputs (0 = down / 1 = up). Output transitions happen between
two successives time slices.

The time slice duration may be specified explicitely or by using a global parameter (see section...
constants above). The duration may be specified as a number of FPGA clock cycles, or in seconds
(’s’), milliseconds (’ms’), microseconds (’us’) or nanoseconds (’ns’); in the later case, the duration
will be converted in FPGA clock cycles using the clockperiod parameter (default is 10 ns). The time
slice duration may be specified with a global parameter defined before (see above in 2.3).

If some outputs should stay in the same defined state (0/1) during the whole sequencer function, this
may be specified with the constants keyword.

[functions]
<function_name> # comment
clocks: <list of affected output lines>
slices:

<duration> = 0/1, 0/1, 0/1, ...
<duration> = 0/1, 0/1, 0/1, ...

9

DRAFT

<duration> = 0/1, 0/1, 0/1, ...
[...]

constants: <line>=1, <line>=0, <line>=1,...

In the following example, two functions are defined: the “Default” one (which should always be
the first one defined), and the “TransferLine” function which changes the parallel lines in order to
move the CCD charges one line down (for the 4-phase E2V CCD).

[functions]
Default: # Default state when not operating
clocks: P2, P3, S1, S2, RG, CL, RST
slices:

1 us = 1, 1, 1, 1, 1, 1, 1

TransferLine: # Single line transfer
clocks: P1, P2, P3, P4, RG, CL
slices:

BufferP = 0, 1, 1, 0, 1, 0
TimeP = 0, 0, 1, 1, 1, 0
TimeP = 1, 0, 0, 1, 1, 0
TimeP = 1, 1, 0, 0, 1, 0
BufferP = 0, 1, 1, 0, 0, 0
7540 ns = 0, 1, 1, 0, 0, 0

constants: S1=1, S2=1, RST=1

Functions will be automatically numbered in the order they are defined in the sequencer file. The
“Default” (function #0) one should always be the first defined.

The first time slice of the first function (#0, here named “Default”) has a particular role: it describe
the default state of the REB outputs when the sequencer is not in operating mode. The outputs will
fall back to this default state when any sequence execution ends.

2.6 Writing the sequencer program: [mains] and [subroutines]

The REB FPGA provides a program memory of 1024 elementary instructions, allowing the user to
store several sequencer programs to be executed. Each sequence is defined into a sequencer program:
to simplify the programming, a given program may call subroutines, which may in turn call other
subroutines as well, and so on.

The top level sequencer programs, also called “mains”, are defined into the “[mains]” section, while
auxiliary subroutines are grouped into the “[subroutines]” section. The syntax for both is the same:
the only difference is that a “main” program should end with the final “END” instruction, while an
auxiliary subroutine should end with the “RTS” (ReTurn from Subroutine) instruction.

Only the top level “mains” may be triggered by the acquisition system (see also TRIGGER and sec-
tion 2.7).

2.6.1 Program instructions

The REB FPGA offers 4 different elementary instructions:

• “CALL” to call an elementary sequencer function (one of the 16 sequencer function, see sec. func
above). Only “CALL” instructions really modify the output signals. An optional “repeat(...)”

10

DRAFT

argument allows to specify how many times this call should be performed (default is once).
There are several way to perform a “CALL”, described below in section 2.6.2, and “CALL”
instructions are translated into opcodes 0x1 to 0x4 depending on the addressing mode (see
below and [7], section 8.4).

• “JSR” to jump to an auxiliary subroutine. The specified subroutine will be executed, and the
program will resume on the next instruction. “JSR” jumps have no action by themselves on the
output signals. As for the “CALL” instruction, an optional “repeat(...)” argument allows
to specify how many times the invoked subroutine should be executed (default is once). There
are several way to invoke a “JSR”, and “JSR” instructions are translated into opcodes 0x5 to
0x8 depending on the addressing mode, see below in section 2.6.3, and [7], section 8.4.

• “RTS” to end an auxiliary subroutine and go back where the subroutine has been called. This
instruction is translated in opcode 0xE at compilation time (see [7], section 8.4).

• “END” to end the sequencer program. This instruction is translated as opcode 0xF at compila-
tion time (see [7], section 8.4).

2.6.2 Calling a sequencer function: direct and indirect addressing

To provide flexibility, and to avoid writing several alternative programs to perform very similar tasks,
the REB FPGA offers different addressing modes to perform a “CALL” to a sequencer function.

A sequencer function may be called directly, by providing its #function_id (in [0-15]). It may
also be called directly by using instead its symbolic name (for instance, ReadPixel), which will
be substituted at compilation time. Each function call may be repeated by specifying the repetition
number with the keyword repeat, as below:

CALL 3 # call func(3), once
CALL 3 repeat(10) # call func(3), 10 times

CALL TransferLine # call func TransferLine, once
CALL TransferLine repeat(10) # idem, 10 times
CALL TransferLine repeat(DetectorRows) # global param.

A sequencer function may also be called through an indirect addressing mode, by using a “function
pointer” (REP_FUNC) which stores the function #id to be called. The pointer has to be defined be-
fore in the pointers section (see section 2.6.5), and may be modified later by the user. In that case,
the indirect subroutine adressing should be indicated by prefixing an “@” to the pointer name. For
instance,

[pointers]
[...]
Function to use during exposure: SerialFlush or ExposureNoFlush
PTR_FUNC Exposure ExposureNoFlush

[subroutines]
[...]
Exposure25ms: # Repeat exposure function for 25 ms
CALL @Exposure repeat(13441)
RTS

In this example, the pointer value of the function pointer Exposure may be modified on the fly
between 2 sequence executions, by writing its new value at its address in the FPGA memory, without
the need to reload the whole sequencer.

11

DRAFT

In the same way, the repetition number (argument of the repeat keyword, which define how many
times a given function should be called in a CALL instruction) may also be defined through a repe-
tition pointer (REP_FUNC), which can also be modified in the FPGA memory without reloading the
sequencer. The same syntax (with a “@”) is used:

[pointers]
[...]
Function to use during exposure: SerialFlush or ExposureNoFlush
PTR_FUNC Exposure ExposureNoFlush
[...]
Repetitions of SerialFlush function during FlushRegister
REP_FUNC FlushTime 100000

[subroutines]
[...]
Exposure25ms: # Repeat exposure function for 25 ms
CALL @Exposure repeat(13441)
RTS

FlushRegister: # Flushing serial register
CALL SerialFlush repeat(@FlushTime)
RTS

Of course, both (function and repetition) may be specified by indirect addressing, as in the following
example:

[pointers]
[...]
Function to use during exposure: SerialFlush or ExposureNoFlush
PTR_FUNC Exposure ExposureNoFlush
[...]
Number of repetition to get a 25ms delay
REP_FUNC ExpNcycles 13441

[subroutines]
[...]
Exposure25ms: # Repeat exposure function for 25 ms
CALL @Exposure repeat(ExpNcycles)
RTS

The 4 modes of addressing for the “CALL” instruction are translated into 4 different opcodes values
at compilation time (see [7], section 8.4):

Keyword Function addressing Repeat addressing Opcode

CALL direct direct 0x01
CALL / CALLP indirect direct 0x02
CALL / CALLREP direct indirect 0x03
CALL / CALLPREP indirect indirect 0x04

For function calls, the number of repetitions may be specified as infinite (infinite loop), using the
special word “infinity”:

12

DRAFT

[mains]
InfiniteWait: # Slow flushing on infinite loop
CALL SlowFlush repeat(infinity)
END

Such a sequencer program can only be stopped at execution time using special STEP or STOP triggers.

2.6.3 Jumping to a subroutine: direct and indirect addressing

As for the “CALL” instruction, the REB FPGA offers different addressing modes to perform a jump
to a subroutine with the “JSR” instruction.

A subroutine may be called directly, by providing the address of the subroutine first instruction in
the program memory, relatively to the beginning of the program memory space. A subroutine may
also be called directly by using instead its symbolic name (for instance, ReadPixel), which will be
substituted by the subroutine address at compilation time.

As for jumps, each subroutine call may be repeated by specifying the repetition number with the
keyword repeat. Contrary to functions calls, a subroutine cannot be repeated infinitely.

JSR 0x080 # jump to subroutine stored
at address 0x080, once

JSR ReadLine # jump to subroutine ReadLine, once

JSR ReadLine repeat(10) # jump to ReadLine, 10 times
JSR ReadLine repeat(DetectorLines) # global param.

A subroutine may also be called through an indirect addressing mode, by using a “subroutine pointer”
(REP_SUBR) which stores the memory address of the subroutine to be called. The pointer has to be
defined before in the pointers section (see section 2.6.5), and may be modified later by the user. The
syntax is similar to CALL instructions: the indirect addressing is specified by prefixing pointers by a
“@” symbol. For instance,

[pointers]
[...]
PTR_SUBR MyClearCCD 0x0f0 # subroutine address, or
PTR_SUBR MyClearCCD FastClear # subroutine name

[subroutines]
[...]
Clear: # Clearing only
JSR @MyClearCCD repeat(10)
END

In the same way, the repetition number (argument of the repeat keyword, which define how
many times the subroutine should be invoked may also be defined through a repetition pointer
(REP_SUBR), which can also be modified directly in the FPGA memory:

[pointers]
Number of rows to skip before window
REP_SUBR PreRows 0
Number of rows of the window

13

DRAFT

REP_SUBR ReadRows 2048
Number of rows after window
REP_SUBR PostRows 0
[...]

[subroutines]
[...]
ReadFrame: # Readout and acquisition of a CCD frame (window)
JSR FlushLine repeat(@PreRows)
JSR FlushRegister
CALL StartOfImage
JSR WindowLine repeat(@ReadRows)
CALL EndOfImage
JSR FlushLine repeat(@PostRows)
RTS

Of course, both indirect addressing modes may be used for the same JSR instruction:

[pointers]
Number of rows of the window
REP_SUBR ReadRows 2048
Pointer to the subroutine to read a line
PTR_SUBR MyWindowLine SpecialLineReadout
[...]

[subroutines]
[...]
ReadFrame: # Readout and acquisition of a CCD frame (window)
JSR FlushLine repeat(@PreRows)
JSR FlushRegister
CALL StartOfImage
JSR @MyWindowLine repeat(@ReadRows) # both indirect
CALL EndOfImage
JSR FlushLine repeat(@PostRows)
RTS

The 4 modes of addressing for the “JSR” jump-to-subroutine instruction are translated into 4 differ-
ent opcodes values at compilation time (see [7], section 8.4):

Keyword Function addressing Repeat addressing Opcode

JSR direct direct 0x05
JSR / JSP indirect direct 0x06
JSR / JSREP direct indirect 0x07
JSR / JSPREP indirect indirect 0x08

At the implementation level in the FPGA microcode, there is a limitation on the number of nested
subroutine calls: at maximum, 15 nested subroutine calls may be performed. The user has to be
careful to avoid reaching this limit, as the resulting behavior may be unpredictable otherwise.

2.6.4 Defining a main program / auxiliary subroutine

Main programs (“mains”) and subroutines are defined as blocks of instructions (one instruction per
line), with the following syntax:

14

DRAFT

[subroutines]

<subroutine_name>: # comment
<instruction>
<instruction>
[...]
RTS

[...]

[mains]

<main_name>: # comment
<instruction>
<instruction>
[...]
END

[...]

The main programs should be defined in the “[mains]” section and should end with the END in-
struction, while the auxiliary subroutines should be defined in the “[subroutines]” section and
end with a RTS instruction. Otherwise, the syntax for both is the same. Here is an example for a
subroutine to read a CCD frame:

[subroutines]
ReadFrame: # Readout of a CCD frame (window)
JSR FlushLine repeat(@PreRows) # PreRows is a rep. ptr
JSR FlushRegister
CALL StartOfImage
JSR WindowLine repeat(@ReadRows)
CALL EndOfImage
JSR FlushLine repeat(@PostRows)
RTS

2.6.5 Indirect addressing: pointers

To allow indirect addressing modes for CALL and JSR instructions, 4 types of pointers are available:
function pointers (PTR_FUNC, pointing to a function id), subroutine pointers (PTR_SUBR, pointing
to a subroutine address), function repetition pointers (REP_FUNC, pointing to a repetition number
for a function), and subroutine repetition pointers (REP_SUBR, pointing to a repetition number for a
subroutine).

Before using a given pointer, it has to be declared and defined in the dedicated “[pointers]”
section, following this syntax:

[pointers]
Number of columns to read
REP_FUNC ReadCols 576
Number of rows of the window
REP_SUBR ReadRows 2048
Number of full CCD clears before acquiring

15

DRAFT

REP_SUBR CleaningNumber 2
Subroutine to use for clearing the frame
PTR_SUBR CleaningSubr MixedFlushLine
Function to use during shutter closing:
SerialFlush or DarkNoFlush
PTR_FUNC ClosingFunc DarkNoFlush
[...]

For each pointer type, up to 16 pointers may be defined.

2.6.6 Advanced sequencer programming

The sequencer language offers a few “advanced features”, designed for very specific uses during sen-
sor testing: simple mathematical (arithmetic) expressions can be used, and three extra instructions:
SET, IF and WHILE are provided to simplify the writing of some complex sequencer programs.

All these features are similar to pre-processing features offered by other programming languages
(C/C++ preprocessor for instance): mathematical expressions, as well as SET, IF and WHILE state-
ments are processed at compilation time, and are not at all executed by the FPGA at runtime (the
expression evaluation, and the SET, IF and WHILE instructions do not exist in the REB FPGA pro-
gramming interface).

The user should keep this in mind when writing complex sequencer programs using these language
features.

Mathematical expressions

When defining the value of a global parameter (section 2.3), a local parameter (see below), or a repe-
tition number, it is possible to provide a simple arithmetic expression instead of an integer number.
Allowed expressions may combine integers, global or local parameters, the mathematical opera-
tors “+” (addition), “-” (subtraction) and “*” (multiplication). Comparison operators (“==”, “!=”,
“<”,“<=”,“>”,“>=”) may also be used, but only at top level.

These mathematical expressions are evaluated at compilation time, and should not include indirect
adressing values (“pointers”, see 2.6.5).

Local parameters

With the “SET” instruction, the sequencer language offers the ability to define local parameters: these
parameters will only be valid in the subroutine/main block where they have been defined. During
the compilation process, these parameters will be substituted by their current value.

The syntax is the following:

SET <localparameter> <expr>

The local parameter value may be any valid expression (see above):

[subroutines]
[...]
MySpecialReadout:
SET windowsize 325
SET MyCols 4 * (2 + DetectorCols) - 1
SET MyParam MyCols - 3 * DetectorCols

16

DRAFT

[...]
CALL ReadPixel repeat(MyParam)
[...]

Local parameters may be used in the same way than global parameters, but only in the subroutine/-
main block where they have been defined.

Conditional blocks

The sequencer language offers a very simple conditional block with the “IF” instruction, which is
analog to #IFDEF statements in the C/C++ preprocessor language. The “IF” syntax is the following:

IF <expr> THEN
<instruction>
<instruction>
[...]

FI

The expression is evaluated at compilation time, and if the value is not zero, the instructions between
the IF and FI statements will be compiled; otherwise they are ignored. Here is an example to illustrate
the “IF” syntax:

[...]
SET PostCols 60
[...]
IF PreCols+Cols+PostCols < DetectorCols THEN
CALL ReadPixel repeat(Cols)
IF PostCols > 10 THEN

CALL ReadPixel repeat(PostCols)
FI

FI

One possible use of this feature is to define global parameters specifying the CCD model (E2V or
ITL), and to compile specific parts of the sequencer code depending of the target CCD model;

[constants]
[...]
CCD_E2V 1 # 1(True) if the CCD is an E2V one
CCD_ITL 0 # 1(True) if the CCD is an ITL one
[...]

And in any subroutine/main program, some code portions may be compiled only for one CCD
model:

[...]
IF CCD_E2V THEN
CALL FastFlush repeat(10)

FI
[...]

17

DRAFT

Conditional loops

The sequencer language offers a very simple conditional loop with the “WHILE” instruction. Its
syntax is shown below:

WHILE <expr> DO
<instruction>
<instruction>
[...]

DONE

As long as the specified expression <expr> is evaluated as non-zero, the block of instructions be-
tween WHILE and DONE is repeated. Loops are unrolled at compilation time. For instance, the fol-
lowing code fragment:

SET MaxLines 6
SET iLine 1
WHILE iLine < MaxLines DO
CALL ReadLine repeat(iLine)
CALL SerialFlush
SET iLine iLine + 1

DONE

is equivalent to:

CALL ReadLine repeat(1)
CALL SerialFlush
CALL ReadLine repeat(2)
CALL SerialFlush
CALL ReadLine repeat(3)
CALL SerialFlush
CALL ReadLine repeat(4)
CALL SerialFlush
CALL ReadLine repeat(5)
CALL SerialFlush

Of course, IF and WHILE blocks may be mixed and nested.

To avoid compilation failure in the case of an (accidental) infinite loop, there is a limit of 1000 loop
iterations for any WHILE loop. When this limit is reached, the compilation process stops and fails.
Anyway, as the program memory is limited to 1024 elementary instructions, this limit should never
be reached if the user aims to write a program which could fit in the FPGA program memory.

2.7 Sequencer trigger mechanism

2.7.1 Main program pointer

The trigger mechanism described hereby is only working with LSST Camera Acquisition version
1.0. This is no longer valid in Acquisition version 2.0: see section 2.7.2.

As the sequencer language allows to define several main programs, there should be a way to specify
which one should be started when the FPGA receives the trigger signal (which is done by setting the
bit 2 in the TRIGGER register, at address 0x8; see [7] section 7.6).

To select the program to be run, a special pointer named “Main” could be defined in the “[pointers]”
section, to specify which “main” program should be launched when the sequencer is triggered:

18

DRAFT

[pointers]
REP_FUNC PreCols 50
REP_FUNC ReadCols 256
[...]
MAIN Main Bias # Default main program is Bias

In the example above, the address of the first instruction of the Bias main program will be stored into
the special Main pointer, which is stored at address 0x340000 (see [7] section 8.4.13). If no Main
pointer has been defined in the sequencer file, the first defined main program will be selected as the
default one.

Once the sequencer has been loaded into the FPGA program memory, the main pointer may be
modified by the user by writing the address of another main program into the Main pointer. That
way, the user may switch to another defined main program. This mechanism allows the user to run
many different sequencer programs, as long as they are loaded into the FPGA program memory.

2.7.2 Triggers: [triggers]

WARNING: this section is still under discussion.

The trigger mechanism described here replaces the previous one for the LSST Camera Acquisition
version 2.0.

As the user may define several main sequencer program in the “[mains]” section, there should be
a way to select which one should be triggered.

With the LSST Camera Acquisition version 2.0, the acquisition system may trigger 8 different actions,
numbered from 0 to 7, by sending a synchronous signal to a subset of REB boards. It is up to the
sequencer user to define which main program should be run for each of this signals. This is done in
the “[triggers]” section at the end of the sequencer program file:

[triggers]
0: Clear
1: Bias
2: Dark
3: Acquisition
4: VariantAcquisition
5: AnotherMain
6: STEP (RESERVED)
7: STOP (RESERVED)

Trigger signals 0 to 5 are available and could be associated to any main program defined in the
sequencer program file. Trigger signals 6 and 7 are reserved and are associated with the STEP and
STOP (see [7] section 8.4.5.2).

The trigger address table is stored at addresses 0x340000–0x340005 (TBR), and the user may modify
this table without reloading the whole sequencer into the FPGA memory.

19

DRAFT
3

Sequencer examples

3.1 Simple sequencer

As an example, we present below a simple sequencer for the E2V, offering bias frames (Bias), normal
frames (Acquisition), with several flushing modes for the serial register. Window frame could be
taken by adapting the values of the PreCols, ReadCols, PostCols and PreRows, ReadRows,
PostRows repetition pointers, and this can be done for each individual frame without reload the
whole sequencer.

In this setup, it is assumed that the shutter opening and closing is controlled by the REB itself, by
sending a signal on line 16 (SHU line), as on the LPNHE/Paris LSST testbench.

REB3 timing for E2V CCD, in new REB sequencer format
new baseline sequencer with overlap in parallel clocks
20170119, C. Juramy.

[constants] # will be substituted in the code at compilation time, if used
SegRows: 2002 # Number of rows of the sensor
SegCols: 512 # Number of columns of the sensors
SerCols: 522 # Size of serial register
DetectorCols: 576 # Total number of columns in a full readout
DetectorRows: 2048 # Total number of rows in a full readout
TimeP: 5000 ns # Base time element of parallel transfers
OverlapP: 1000 ns # Overlap at three phases in parallel transfer
BufferP: 2500 ns # Parallel transfer buffer time
TimeS: 300 ns # Base element of serial transfers
BufferS: 80 ns # Buffer for serial clock crossing
RampTime: 320 ns # ASPIC ramp time
ISO1: 130 ns # Time between end of ASPIC clamp/reset and start of RD
ISO2: 320 ns # Time between S3 down and start of ASPIC RU
FlushS: 540 ns # Base element for flushing the serial register
clockperiod: 10 ns # FPGA clock period (required by the interpreter)
ElemExposure: 25 ms # Duration of the elementary exposure subroutine

[clocks] # clock channels
P1: 8 # Parallel clock 1
P2: 9 # Parallel clock 2
P3: 10 # Parallel clock 3
P4: 11 # Parallel clock 4
S1: 4 # Serial clock 1
S2: 5 # Serial clock 2
S3: 6 # Serial clock 3
RG: 7 # Serial reset clock
CL: 3 # ASPIC clamp
RST: 2 # ASPIC integrator reset
RD: 1 # ASPIC ramp-down integration
RU: 0 # ASPIC ramp-up integration
TRG: 12 # ADC sampling trigger
SOI: 13 # Start of image
EOI: 14 # End of image
SHU: 16 # Shutter TTL (for testing only)

[pointers] # can define a pointer to a function or to a repetition number

20

DRAFT

(for subroutines or functions)
REP_FUNC PreCols 300 # Number of columns to skip

before readout window, including prescan
REP_FUNC ReadCols 50 # Number of columns to read
REP_FUNC PostCols 226 # Number of columns to discard after window

(it is up to the user that total columns = 576)
REP_FUNC OverCols 50 # Number of columns acquired after line is read

#for baseline subtraction
REP_SUBR ExposureTime 80 # Duration of exposure in units of 25 ms
REP_SUBR PreRows 1000 # Number of rows to skip before window
REP_SUBR ReadRows 50 # Number of rows of the window
REP_SUBR PostRows 970 # Number of rows after window

(it is up to the user that total lines = 2048)
REP_SUBR CleaningNumber 2 # Number of full CCD clears before acquiring a frame
PTR_SUBR CleaningSubr FlushLine # Subroutine to use for clearing the frame
PTR_FUNC Exposure ExposureFlush # Function to use during exposure:

SerialFlush or ExposureFlush
or ExposureNoFlush or DarkNoFlush
(in addition to the periodic flushing)

PTR_FUNC ClosingFunc SerialFlush # Function to use during shutter closing:
SerialFlush or DarkNoFlush

REP_FUNC ShutterTime 50000 # Repetitions of ClosingFunc function
during ShutterClose (approx 100 ms)

REP_FUNC FlushTime 50000 # Repetitions of SerialFlush function
during FlushRegister

REP_SUBR FlushLines 100 # Repetitions of the fake readout lines
during FlushRegister

[functions]
Default: # Default state when not operating

clocks: P2, P3, S1, S2, RG, CL, RST
slices:

1 us = 1, 1, 1, 1, 1, 1, 1

TransferLine: # Single line transfer
clocks: P1, P2, P3, P4
slices:

BufferP = 0, 1, 1, 0
OverlapP = 0, 1, 1, 1
TimeP = 0, 0, 1, 1
OverlapP = 1, 0, 1, 1
TimeP = 1, 0, 0, 1
OverlapP = 1, 1, 0, 1
TimeP = 1, 1, 0, 0
OverlapP = 1, 1, 1, 0
1000 ns = 0, 1, 1, 0
7540 ns = 0, 1, 1, 0 # made it longer to match e2v timing

constants: S1=1, S2=1

ParallelFlush: # Single line transfer with all serial register clocks high to flush it
clocks: P1, P2, P3, P4
slices:

7500 ns = 0, 1, 1, 0
OverlapP = 0, 1, 1, 1
15000 ns = 0, 0, 1, 1
OverlapP = 1, 0, 1, 1
15000 ns = 1, 0, 0, 1
OverlapP = 1, 1, 0, 1
15000 ns = 1, 1, 0, 0
OverlapP = 1, 1, 1, 0
36000 ns = 0, 1, 1, 0 # made it longer to match e2v timing
7500 ns = 0, 1, 1, 0

constants: S1=1, S2=1, S3=1, RG=1, RST=1

ReadPixel: # Single pixel read
clocks: RG, S1, S2, S3, CL, RST, RD, RU, TRG
slices:

50 ns = 1, 0, 1, 0, 0, 0, 0, 0, 1
150 ns = 1, 0, 1, 0, 0, 0, 0, 0, 0
BufferS = 1, 0, 1, 1, 0, 1, 0, 0, 0
BufferS = 0, 0, 0, 1, 0, 1, 0, 0, 0
250 ns = 0, 0, 0, 1, 1, 1, 0, 0, 0
ISO1 = 0, 0, 0, 1, 0, 0, 0, 0, 0
RampTime = 0, 0, 0, 1, 0, 0, 1, 0, 0
BufferS = 0, 1, 0, 1, 0, 0, 0, 0, 0
ISO2 = 0, 1, 0, 0, 0, 0, 0, 0, 0

21

DRAFT

RampTime = 0, 1, 0, 0, 0, 0, 0, 1, 0
BufferS = 0, 1, 1, 0, 0, 0, 0, 0, 0

constants: P2=1, P3=1

StartOfImage: # Signals start of frame to be recorded
clocks: SOI
slices:

1600 ns = 0 # lets ADC finish previous conversion and transfer
100 ns = 1
100 ns = 0

constants: P2=1, P3=1, S1=1, S2=1, RG=1

EndOfImage: # Signals end of frame to be recorded
clocks: EOI
slices:

1600 ns = 0 # lets ADC finish conversion and transfer
100 ns = 1
100 ns = 0

constants: P2=1, P3=1, S1=1, S2=1, RG=1

SerialFlush: # Single pixel flush with timing set by FlushS parameter
clocks: RG, S1, S2, S3
slices:

FlushS = 1, 0, 1, 0
BufferS = 1, 0, 1, 1
FlushS = 0, 0, 0, 1
BufferS = 0, 1, 0, 1
FlushS = 0, 1, 0, 0
BufferS = 0, 1, 1, 0

constants: P2=1, P3=1, RST=1

ExposureFlush: # Exposure while flushing serial register (testing only)
same timing as SerialFlushReg

clocks: RG, S1, S2, S3
slices:

FlushS = 1, 0, 1, 0
BufferS = 1, 0, 1, 1
FlushS = 1, 0, 0, 1
BufferS = 1, 1, 0, 1
FlushS = 1, 1, 0, 0
BufferS = 1, 1, 1, 0

constants: P2=1, P3=1, RST=1, SHU=1

DarkNoFlush: # Dark without flushing serial register
same timing as SerialFlushReg

clocks: RG, S1, S2, S3
slices:

FlushS = 1, 1, 1, 1
BufferS = 1, 1, 1, 1
FlushS = 1, 1, 1, 1
BufferS = 1, 1, 1, 1
FlushS = 1, 1, 1, 1
BufferS = 1, 1, 1, 1

constants: P2=1, P3=1, RST=1

ExposureNoFlush: # Exposure without flushing serial register (testing only),
same timing as SerialFlushReg

clocks: RG, S1, S2, S3
slices:

FlushS = 1, 1, 1, 1
BufferS = 1, 1, 1, 1
FlushS = 1, 1, 1, 1
BufferS = 1, 1, 1, 1
FlushS = 1, 1, 1, 1
BufferS = 1, 1, 1, 1

constants: P2=1, P3=1, RST=1, SHU=1

SlowFlush: # Simultaneous serial and parallel flush, slow (waiting pattern)
clocks: RG, S1, S2, S3, P1, P2, P3, P4
slices:

TimeP = 1, 0, 1, 0, 0, 1, 1, 0
TimeP = 0, 0, 0, 1, 0, 1, 1, 0
TimeP = 0, 1, 0, 0, 0, 1, 1, 0
TimeP = 0, 0, 1, 0, 0, 1, 1, 0
TimeP = 0, 0, 0, 1, 0, 1, 1, 0
TimeP = 0, 1, 0, 0, 0, 1, 1, 0

22

DRAFT

TimeP = 0, 0, 1, 0, 0, 1, 1, 0
TimeP = 0, 0, 0, 1, 0, 1, 1, 0
TimeP = 0, 1, 0, 0, 0, 1, 1, 0
TimeP = 1, 0, 1, 0, 0, 1, 1, 0
20000 ns = 1, 0, 1, 0, 0, 0, 1, 1
20000 ns = 1, 0, 1, 0, 1, 0, 0, 1
20000 ns = 1, 0, 1, 0, 1, 1, 0, 0
20000 ns = 0, 0, 1, 0, 0, 1, 1, 0

constants: CL=1, RST=1

[subroutines]
#
Line-level operations ---
#
including several options to flush lines

FlushLine: # Transfer line with all serial clocks and reset high
CALL ParallelFlush
RTS

PixelFlushLine: # Transfer line and flush it pixel by pixel
CALL TransferLine
CALL SerialFlush repeat(DetectorCols)
RTS

WindowLine: # Line readout
CALL TransferLine
CALL SerialFlush repeat(@PreCols)
CALL ReadPixel repeat(@ReadCols)
CALL SerialFlush repeat(@PostCols)
RTS

WindowWithOverscan: # Line readout adding pixels in the overscan
CALL TransferLine
CALL SerialFlush repeat(@PreCols)
CALL ReadPixel repeat(@ReadCols)
CALL SerialFlush repeat(@PostCols)
CALL ReadPixel repeat(@OverCols)
RTS

#
Frame-level readout operations ------------------------------------
#

CloseShutter: # Gives time for shutter to close
(to be adapted depending on setup)

CALL @ClosingFunc repeat(@ShutterTime)
RTS

FlushRegister: # Flushing serial register from accumulated charges
CALL SerialFlush repeat(@FlushTime)
RTS

ReadFrame: # Readout and acquisition of a CCD frame (window)
JSR FlushLine repeat(@PreRows)
JSR FlushRegister
CALL StartOfImage
JSR WindowLine repeat(@ReadRows)
CALL EndOfImage
JSR FlushLine repeat(@PostRows)
RTS

FakeFrame: # Readout of a CCD frame (window) with no data output
JSR FlushLine repeat(@PreRows)
JSR FlushRegister
JSR WindowLine repeat(@ReadRows)
JSR FlushLine repeat(@PostRows)
RTS

#
Exposure operations ---
#

Exposure25ms: # Repeat exposure function for 25 ms
CALL @Exposure repeat(13441)
RTS

23

DRAFT

ClearCCD: # Clear CCD once
JSR @CleaningSubr repeat(DetectorRows)
RTS

AcquireFrame: # Operations to expose (or not) a CCD frame
JSR ClearCCD repeat(@CleaningNumber)
JSR Exposure25ms repeat(@ExposureTime)
JSR CloseShutter
RTS

[mains]
RawBias: # Bias without clearing first

JSR ReadFrame
END

Clear: # Clearing only
JSR ClearCCD repeat(@CleaningNumber)
END

Bias: # Bias after clearing up CCD content
JSR ClearCCD repeat(@CleaningNumber)
JSR ReadFrame
END

Acquisition: # One acquisition (exposure or dark)
JSR AcquireFrame
JSR ReadFrame
END

NoAcquisition: # Simulates acquisition without storing image (for debugging)
JSR AcquireFrame
JSR FakeFrame
END

InfiniteWait: # Slow flushing on infinite loop
CALL SlowFlush repeat(infinity)
END

Dark: # copied from Acquisition, for compatibility with previous sequences
JSR AcquireFrame
JSR ReadFrame
END

3.2 Special flat sequence

As a second example, we present here a set of sequencer extra subroutines allowing to make a very
uniform flat frame by reading the CCD while it is still illuminated. In a first step, all lines are flushed
out at the normal readout speed, but as the StartOfImage function has not been called, no pixels
are sent to the LSST acquisition system. Then, a StartOfImage is sent, and we proceed to a normal
readout of the CCD frame. In the resulting recorded frame, the flux in each pixel is the average
of the CCD illumination along the whole CCD column, resulting in a very uniform frame, even
if the illumination pattern is not very uniform. This type of sequence may prove useful for gain
measurements, for instance.

[...]
[subroutines]

[...]

AcquireFrame: # Operations to expose (or not)
JSR ClearCCD repeat(@CleaningNumber)
JSR Exposure25ms repeat(@ExposureTime)
JSR CloseShutter
RTS

24

DRAFT

FlatFrame: # Special flat frame: move all lines out,
then read a normal frame

JSR FlushRegister
JSR WindowLine repeat(@ReadRows)
CALL StartOfImage
JSR WindowLine repeat(@ReadRows)
CALL EndOfImage
RTS

[mains]
[...]

FlatAcquisition:
JSR AcquireFrame
JSR FlatFrame
END

3.3 Reverse clocking to measure non-linearity

In this third example, we present here a set of sequencer subroutines which may prove useful to
measure the non-linearity at very low illumination levels. The sequence LinearityAcquisition
runs as follow (with light on, and no shutter):

1. The whole CCD is cleared.

2. Then the following sequence is repeated:

(a) Using reverse parallel transfer, we move 100 lines up; No pixel is read yet.

(b) The sequencer waits for a certain delay (integrating time);

(c) Then 50 lines are read using the normal readout process.

At each iteration, the delay is increased.

The resulting frame will present several blocks 50 lines, each one exhibiting a similar gradient, but
with a increasing illumination level. The gradient is the same for each block, and by subtracting it,
only remains the flux integrated during the delay (which increases for each block).

As the delay increases, we are then able to study the CCD response at very low fluxes, with an effec-
tive exposure time controlled at the nanosecond level, something impossible to do with a mechanical
shutter. A frame obtained that way is show on fig 3.1.

This sequence takes advantage of the advanced features of the sequencer language (SET and WHILE
meta-instructions).

25

DRAFT

[...]
[functions]

[...]

RevTransferLine: # Single line reverse transfer
clocks: P1, P2, P3, P4
slices:

BufferP = 0, 1, 1, 0
OverlapP = 1, 1, 1, 0
TimeP = 1, 1, 0, 0
OverlapP = 1, 1, 0, 1
TimeP = 1, 0, 0, 1
OverlapP = 1, 0, 1, 1
TimeP = 0, 0, 1, 1
OverlapP = 0, 1, 1, 1
TimeP = 0, 1, 1, 0
5000 ns = 0, 1, 1, 0 # to match e2v timing

constants: S1=1, S2=1

[...]
[subroutines]

[...]

LinearityFrame: # Special
JSR FlushRegister
CALL StartOfImage
SET uplines 100
SET downlines 50
SET wait 0
SET rep 0
SET maxrep 20
WHILE rep < maxrep DO

CALL RevTransferLine repeat(uplines)
JSR Exposure25ms repeat(wait)
JSR WindowLine repeat(downlines)
SET rep rep + 1
SET wait wait + 10

DONE
CALL EndOfImage
RTS

[mains]
[...]

LinearityAcquisition: # Special
JSR ClearCCD repeat(@CleaningNumber)
JSR LinearityFrame
END

26

DRAFT

Figure 3.1: CCD frame obtained by alterning between reverse parallel transfer (100 lines) and normal parallel
transfer (50 lines, with pixel readout), and an increasing delay between reverse and normal parallel transfers at
each iteration. Such type of sequencer program may be used to measure non linearity at very low illumination.

27

DRAFT
4

Sequencer program compilation

4.1 Available compilers and tools

4.1.1 CCS java classes

TBW (CCS classes involved into the sequencer compilation process: E. Aubourg)

4.1.2 Standalone python tools

As a development toolbox, we provide the sequencer compiler written in python, as a very light
standalone python package, available here:

http://supernovae.in2p3.fr/~llg/LSST/REB/sequencer/lsst-sequencer-compiler-0.8.tar.bz2

This package provides a python program named seqcompiler, which transforms a sequencer pro-
gram (*.txt or *.seq) into its compiled version (*.compiled, see below), ready to be loaded into
the REB FPGA program memory.

4.1.3 Low level acquisition tools

Once the sequencer program has been compiled, the program may be loaded into the program mem-
ory of the REB FPGA by successive calls to rms_read, a tool from the LSST acquisition system. In a
similar way, a dump of the entire program memory may be done by successive calls to rms_write.

4.2 Compilation process

The compilation of a sequencer program file follows these steps:

1. The main sequencer file and all included files, are recursively parsed. Later definitions replace
previous one.

2. Functions are encoded, with time slices durations and outputs properly formatted;

3. subroutines and main programs are compiled, in their definition order. Pseudo-instructions
SET, IF, and WHILE are processed. The resulting code is translated in elementary instructions
CALL, JSR, RTS and END. At this step, global and local parameters are replaced by their values.

4. Functions names are replaced by functions ids.

28

http://supernovae.in2p3.fr/~llg/LSST/REB/sequencer/lsst-sequencer-compiler-0.8.tar.bz2

DRAFT

5. subroutines and main programs are relocated in the program memory. subroutines and main
programs names are replaced by their address value.

6. Instructions are translated into opcodes, ready to be loaded into the FPGA program memory.

The end products of the compilation process are:

• A list of pairs address/value to load into the REB FPGA program memory;

• A list of main programs (mains) addresses, with their symbolic names (e.g. Bias, Acquisition);

• A list of (modifiable) pointers with their symbolic name, their address and their initial value.

4.3 Compiled sequencer programs: file format

In this section, we described the file format for compiled sequencer programs (*.compiled). This
file format may also be used for fast loading of a sequencer program, and for dumps of the REB
FPGA program memory.

The file format is quite simple: it mainly consists of a list of memory addresses and values to be
affected at the corresponding adresses, like this:

[...]
0x100010: 0x00000630
0x100011: 0x00000e30
0x100012: 0x00000c30
0x100013: 0x00000d30
0x100014: 0x00000930
0x100015: 0x00000b30
0x100016: 0x00000330
0x100017: 0x00000730
0x100018: 0x00000630
0x100019: 0x00000630
0x10001a: 0x00000000
[...]

This file format is very simple to parse and process, and loading the program into the REB FPGA
program memory may be done by successive calls to rms_write (see above).

Extra informations are provided as comments (prefixed by a ’#’). For each elementary function,
the name and the execution time are given in commented lines. The list of pointers and the list of
available mains/subroutines are provided in a commented section as well.

The symbolic name and relative address of each main are given with the following syntax:

[...]
==
[subroutines/mains]
##
--
Main/Subroutine relative addresses
(program base addr 0x300000)
##
WindowLine: 0x000048
AcquireFrame: 0x000088

29

DRAFT

PixelFlushLine: 0x000040
InfiniteWait: 0x000028
Exposure25ms: 0x000078
Clear: 0x000008
FakeFrame: 0x000070
ReadFrame: 0x000068
RawBias: 0x000000
Dark: 0x000030
Bias: 0x000010
CloseShutter: 0x000058
FlushRegister: 0x000060
NoAcquisition: 0x000020
ClearCCD: 0x000080
FlushLine: 0x000038
Acquisition: 0x000018
WindowWithOverscan: 0x000050
--
[...]

And for the pointers, the symbolic name and the pointer type are given as comments at the end of
each line:

[...]
==
[pointers]
##
0x380000: 0x000050 # REP_SUBR: ExposureTime
0x380004: 0x000002 # REP_SUBR: CleaningNumber
0x340000: 0x000000 # MAIN: Main
0x380002: 0x000032 # REP_SUBR: ReadRows
0x370000: 0x000038 # PTR_SUBR: CleaningSubr
0x380005: 0x000064 # REP_SUBR: FlushLines
0x360004: 0x00c350 # REP_FUNC: ShutterTime
0x360000: 0x00012c # REP_FUNC: PreCols
0x360003: 0x000032 # REP_FUNC: OverCols
0x360005: 0x00c350 # REP_FUNC: FlushTime
0x380003: 0x0003ca # REP_SUBR: PostRows
0x380001: 0x0003e8 # REP_SUBR: PreRows
0x360002: 0x0000e2 # REP_FUNC: PostCols
0x350001: 0x000006 # PTR_FUNC: ClosingFunc
0x360001: 0x000032 # REP_FUNC: ReadCols
0x350000: 0x000007 # PTR_FUNC: Exposure
==
[...]

4.4 Compiled program: complete example

We provide here the complete compiled file as an example to illustrate the file format.

LSST REB compiled sequencer file
REB: REB5
Source: seq-overp-full.seq
Compilation date: 2017-04-19 14:36:08.847949

30

DRAFT

Compiler: python lsst-seq-compiler 0.9
Compiler authors: L. Le Guillou, C. Juramy
==
[functions]
##
--
function: #0
name: Default
description: Default state when not operating
execution time: 102
##
0x100000: 0x000006bc
0x100001: 0x00000000
0x100002: 0x00000000
0x100003: 0x00000000
0x100004: 0x00000000
0x100005: 0x00000000
0x100006: 0x00000000
0x100007: 0x00000000
0x100008: 0x00000000
0x100009: 0x00000000
0x10000a: 0x00000000
0x10000b: 0x00000000
0x10000c: 0x00000000
0x10000d: 0x00000000
0x10000e: 0x00000000
0x10000f: 0x00000000
0x200000: 0x00000063
0x200001: 0x00000000
0x200002: 0x00000000
0x200003: 0x00000000
0x200004: 0x00000000
0x200005: 0x00000000
0x200006: 0x00000000
0x200007: 0x00000000
0x200008: 0x00000000
0x200009: 0x00000000
0x20000a: 0x00000000
0x20000b: 0x00000000
0x20000c: 0x00000000
0x20000d: 0x00000000
0x20000e: 0x00000000
0x20000f: 0x00000000
--
function: #1
name: TransferLine
description: Single line transfer
execution time: 3004
##
0x100010: 0x00000630
0x100011: 0x00000e30
0x100012: 0x00000c30
0x100013: 0x00000d30
0x100014: 0x00000930
0x100015: 0x00000b30
0x100016: 0x00000330
0x100017: 0x00000730
0x100018: 0x00000630
0x100019: 0x00000630
0x10001a: 0x00000000
0x10001b: 0x00000000
0x10001c: 0x00000000
0x10001d: 0x00000000
0x10001e: 0x00000000
0x10001f: 0x00000000
0x200010: 0x000000f9
0x200011: 0x00000064
0x200012: 0x000001f4
0x200013: 0x00000064
0x200014: 0x000001f4
0x200015: 0x00000064
0x200016: 0x000001f4
0x200017: 0x00000064
0x200018: 0x00000064
0x200019: 0x000002f0
0x20001a: 0x00000000

31

DRAFT

0x20001b: 0x00000000
0x20001c: 0x00000000
0x20001d: 0x00000000
0x20001e: 0x00000000
0x20001f: 0x00000000
--
function: #2
name: ParallelFlush
description: Single line transfer with all serial register clocks high to flush it
execution time: 10000
##
0x100020: 0x000006f4
0x100021: 0x00000ef4
0x100022: 0x00000cf4
0x100023: 0x00000df4
0x100024: 0x000009f4
0x100025: 0x00000bf4
0x100026: 0x000003f4
0x100027: 0x000007f4
0x100028: 0x000006f4
0x100029: 0x000006f4
0x10002a: 0x00000000
0x10002b: 0x00000000
0x10002c: 0x00000000
0x10002d: 0x00000000
0x10002e: 0x00000000
0x10002f: 0x00000000
0x200020: 0x000002ed
0x200021: 0x00000064
0x200022: 0x000005dc
0x200023: 0x00000064
0x200024: 0x000005dc
0x200025: 0x00000064
0x200026: 0x000005dc
0x200027: 0x00000064
0x200028: 0x00000e10
0x200029: 0x000002ec
0x20002a: 0x00000000
0x20002b: 0x00000000
0x20002c: 0x00000000
0x20002d: 0x00000000
0x20002e: 0x00000000
0x20002f: 0x00000000
--
function: #3
name: ReadPixel
description: Single pixel read
execution time: 186
##
0x100030: 0x000016a0
0x100031: 0x000006a0
0x100032: 0x000006e4
0x100033: 0x00000644
0x100034: 0x0000064c
0x100035: 0x00000640
0x100036: 0x00000642
0x100037: 0x00000650
0x100038: 0x00000610
0x100039: 0x00000611
0x10003a: 0x00000630
0x10003b: 0x00000000
0x10003c: 0x00000000
0x10003d: 0x00000000
0x10003e: 0x00000000
0x10003f: 0x00000000
0x200030: 0x00000004
0x200031: 0x0000000f
0x200032: 0x00000008
0x200033: 0x00000008
0x200034: 0x00000019
0x200035: 0x0000000d
0x200036: 0x00000020
0x200037: 0x00000008
0x200038: 0x00000020
0x200039: 0x00000020
0x20003a: 0x00000006

32

DRAFT

0x20003b: 0x00000000
0x20003c: 0x00000000
0x20003d: 0x00000000
0x20003e: 0x00000000
0x20003f: 0x00000000
--
function: #4
name: StartOfImage
description: Signals start of frame to be recorded
execution time: 180
##
0x100040: 0x000006b0
0x100041: 0x000026b0
0x100042: 0x000006b0
0x100043: 0x00000000
0x100044: 0x00000000
0x100045: 0x00000000
0x100046: 0x00000000
0x100047: 0x00000000
0x100048: 0x00000000
0x100049: 0x00000000
0x10004a: 0x00000000
0x10004b: 0x00000000
0x10004c: 0x00000000
0x10004d: 0x00000000
0x10004e: 0x00000000
0x10004f: 0x00000000
0x200040: 0x0000009f
0x200041: 0x0000000a
0x200042: 0x00000008
0x200043: 0x00000000
0x200044: 0x00000000
0x200045: 0x00000000
0x200046: 0x00000000
0x200047: 0x00000000
0x200048: 0x00000000
0x200049: 0x00000000
0x20004a: 0x00000000
0x20004b: 0x00000000
0x20004c: 0x00000000
0x20004d: 0x00000000
0x20004e: 0x00000000
0x20004f: 0x00000000
--
function: #5
name: EndOfImage
description: Signals end of frame to be recorded
execution time: 180
##
0x100050: 0x000006b0
0x100051: 0x000046b0
0x100052: 0x000006b0
0x100053: 0x00000000
0x100054: 0x00000000
0x100055: 0x00000000
0x100056: 0x00000000
0x100057: 0x00000000
0x100058: 0x00000000
0x100059: 0x00000000
0x10005a: 0x00000000
0x10005b: 0x00000000
0x10005c: 0x00000000
0x10005d: 0x00000000
0x10005e: 0x00000000
0x10005f: 0x00000000
0x200050: 0x0000009f
0x200051: 0x0000000a
0x200052: 0x00000008
0x200053: 0x00000000
0x200054: 0x00000000
0x200055: 0x00000000
0x200056: 0x00000000
0x200057: 0x00000000
0x200058: 0x00000000
0x200059: 0x00000000
0x20005a: 0x00000000

33

DRAFT

0x20005b: 0x00000000
0x20005c: 0x00000000
0x20005d: 0x00000000
0x20005e: 0x00000000
0x20005f: 0x00000000
--
function: #6
name: SerialFlush
description: Single pixel flush with timing set by FlushS parameter
execution time: 186
##
0x100060: 0x000006a4
0x100061: 0x000006e4
0x100062: 0x00000644
0x100063: 0x00000654
0x100064: 0x00000614
0x100065: 0x00000634
0x100066: 0x00000000
0x100067: 0x00000000
0x100068: 0x00000000
0x100069: 0x00000000
0x10006a: 0x00000000
0x10006b: 0x00000000
0x10006c: 0x00000000
0x10006d: 0x00000000
0x10006e: 0x00000000
0x10006f: 0x00000000
0x200060: 0x00000035
0x200061: 0x00000008
0x200062: 0x00000036
0x200063: 0x00000008
0x200064: 0x00000036
0x200065: 0x00000006
0x200066: 0x00000000
0x200067: 0x00000000
0x200068: 0x00000000
0x200069: 0x00000000
0x20006a: 0x00000000
0x20006b: 0x00000000
0x20006c: 0x00000000
0x20006d: 0x00000000
0x20006e: 0x00000000
0x20006f: 0x00000000
--
function: #7
name: ExposureFlush
description: Exposure while flushing serial register (testing only), same timing as SerialFlushReg
execution time: 186
##
0x100070: 0x000106a4
0x100071: 0x000106e4
0x100072: 0x000106c4
0x100073: 0x000106d4
0x100074: 0x00010694
0x100075: 0x000106b4
0x100076: 0x00000000
0x100077: 0x00000000
0x100078: 0x00000000
0x100079: 0x00000000
0x10007a: 0x00000000
0x10007b: 0x00000000
0x10007c: 0x00000000
0x10007d: 0x00000000
0x10007e: 0x00000000
0x10007f: 0x00000000
0x200070: 0x00000035
0x200071: 0x00000008
0x200072: 0x00000036
0x200073: 0x00000008
0x200074: 0x00000036
0x200075: 0x00000006
0x200076: 0x00000000
0x200077: 0x00000000
0x200078: 0x00000000
0x200079: 0x00000000
0x20007a: 0x00000000

34

DRAFT

0x20007b: 0x00000000
0x20007c: 0x00000000
0x20007d: 0x00000000
0x20007e: 0x00000000
0x20007f: 0x00000000
--
function: #8
name: DarkNoFlush
description: Dark without flushing serial register, same timing as SerialFlushReg
execution time: 186
##
0x100080: 0x000006f4
0x100081: 0x000006f4
0x100082: 0x000006f4
0x100083: 0x000006f4
0x100084: 0x000006f4
0x100085: 0x000006f4
0x100086: 0x00000000
0x100087: 0x00000000
0x100088: 0x00000000
0x100089: 0x00000000
0x10008a: 0x00000000
0x10008b: 0x00000000
0x10008c: 0x00000000
0x10008d: 0x00000000
0x10008e: 0x00000000
0x10008f: 0x00000000
0x200080: 0x00000035
0x200081: 0x00000008
0x200082: 0x00000036
0x200083: 0x00000008
0x200084: 0x00000036
0x200085: 0x00000006
0x200086: 0x00000000
0x200087: 0x00000000
0x200088: 0x00000000
0x200089: 0x00000000
0x20008a: 0x00000000
0x20008b: 0x00000000
0x20008c: 0x00000000
0x20008d: 0x00000000
0x20008e: 0x00000000
0x20008f: 0x00000000
--
function: #9
name: ExposureNoFlush
description: Exposure without flushing serial register (testing only), same timing as SerialFlushReg
execution time: 186
##
0x100090: 0x000106f4
0x100091: 0x000106f4
0x100092: 0x000106f4
0x100093: 0x000106f4
0x100094: 0x000106f4
0x100095: 0x000106f4
0x100096: 0x00000000
0x100097: 0x00000000
0x100098: 0x00000000
0x100099: 0x00000000
0x10009a: 0x00000000
0x10009b: 0x00000000
0x10009c: 0x00000000
0x10009d: 0x00000000
0x10009e: 0x00000000
0x10009f: 0x00000000
0x200090: 0x00000035
0x200091: 0x00000008
0x200092: 0x00000036
0x200093: 0x00000008
0x200094: 0x00000036
0x200095: 0x00000006
0x200096: 0x00000000
0x200097: 0x00000000
0x200098: 0x00000000
0x200099: 0x00000000
0x20009a: 0x00000000

35

DRAFT

0x20009b: 0x00000000
0x20009c: 0x00000000
0x20009d: 0x00000000
0x20009e: 0x00000000
0x20009f: 0x00000000
--
function: #10
name: SlowFlush
description: Simultaneous serial and parallel flush, slow (waiting pattern)
execution time: 13000
##
0x1000a0: 0x000006ac
0x1000a1: 0x0000064c
0x1000a2: 0x0000061c
0x1000a3: 0x0000062c
0x1000a4: 0x0000064c
0x1000a5: 0x0000061c
0x1000a6: 0x0000062c
0x1000a7: 0x0000064c
0x1000a8: 0x0000061c
0x1000a9: 0x000006ac
0x1000aa: 0x00000cac
0x1000ab: 0x000009ac
0x1000ac: 0x000003ac
0x1000ad: 0x0000062c
0x1000ae: 0x00000000
0x1000af: 0x00000000
0x2000a0: 0x000001f3
0x2000a1: 0x000001f4
0x2000a2: 0x000001f4
0x2000a3: 0x000001f4
0x2000a4: 0x000001f4
0x2000a5: 0x000001f4
0x2000a6: 0x000001f4
0x2000a7: 0x000001f4
0x2000a8: 0x000001f4
0x2000a9: 0x000001f4
0x2000aa: 0x000007d0
0x2000ab: 0x000007d0
0x2000ac: 0x000007d0
0x2000ad: 0x000007ce
0x2000ae: 0x00000000
0x2000af: 0x00000000
==
[subroutines/mains]
##
--
Main/Subroutine relative addresses
(program base addr 0x300000)
##
WindowLine: 0x000048
AcquireFrame: 0x000088
PixelFlushLine: 0x000040
InfiniteWait: 0x000028
Exposure25ms: 0x000078
Clear: 0x000008
FakeFrame: 0x000070
ReadFrame: 0x000068
RawBias: 0x000000
Dark: 0x000030
Bias: 0x000010
CloseShutter: 0x000058
FlushRegister: 0x000060
NoAcquisition: 0x000020
ClearCCD: 0x000080
FlushLine: 0x000038
Acquisition: 0x000018
WindowWithOverscan: 0x000050
--
0x300000: 0x50680001
0x300001: 0xf0000000
0x300008: 0x70800004
0x300009: 0xf0000000
0x300010: 0x70800004
0x300011: 0x50680001
0x300012: 0xf0000000

36

DRAFT

0x300018: 0x50880001
0x300019: 0x50680001
0x30001a: 0xf0000000
0x300020: 0x50880001
0x300021: 0x50700001
0x300022: 0xf0000000
0x300028: 0x1a800000
0x300029: 0xf0000000
0x300030: 0x50880001
0x300031: 0x50680001
0x300032: 0xf0000000
0x300038: 0x12000001
0x300039: 0xe0000000
0x300040: 0x11000001
0x300041: 0x16000240
0x300042: 0xe0000000
0x300048: 0x11000001
0x300049: 0x36000000
0x30004a: 0x33000001
0x30004b: 0x36000002
0x30004c: 0xe0000000
0x300050: 0x11000001
0x300051: 0x36000000
0x300052: 0x33000001
0x300053: 0x36000002
0x300054: 0x33000003
0x300055: 0xe0000000
0x300058: 0x41000004
0x300059: 0xe0000000
0x300060: 0x36000005
0x300061: 0xe0000000
0x300068: 0x70380001
0x300069: 0x50600001
0x30006a: 0x14000001
0x30006b: 0x70480002
0x30006c: 0x15000001
0x30006d: 0x70380003
0x30006e: 0xe0000000
0x300070: 0x70380001
0x300071: 0x50600001
0x300072: 0x70480002
0x300073: 0x70380003
0x300074: 0xe0000000
0x300078: 0x20003481
0x300079: 0xe0000000
0x300080: 0x60000800
0x300081: 0xe0000000
0x300088: 0x70800004
0x300089: 0x70780000
0x30008a: 0x50580001
0x30008b: 0xe0000000
==
[pointers]
##
0x380000: 0x000050 # REP_SUBR: ExposureTime
0x380004: 0x000002 # REP_SUBR: CleaningNumber
0x340000: 0x000000 # MAIN: Main
0x380002: 0x000032 # REP_SUBR: ReadRows
0x370000: 0x000038 # PTR_SUBR: CleaningSubr
0x380005: 0x000064 # REP_SUBR: FlushLines
0x360004: 0x00c350 # REP_FUNC: ShutterTime
0x360000: 0x00012c # REP_FUNC: PreCols
0x360003: 0x000032 # REP_FUNC: OverCols
0x360005: 0x00c350 # REP_FUNC: FlushTime
0x380003: 0x0003ca # REP_SUBR: PostRows
0x380001: 0x0003e8 # REP_SUBR: PreRows
0x360002: 0x0000e2 # REP_FUNC: PostCols
0x350001: 0x000006 # PTR_FUNC: ClosingFunc
0x360001: 0x000032 # REP_FUNC: ReadCols
0x350000: 0x000007 # PTR_FUNC: Exposure
==

37

DRAFT
5

Language grammar

In this section we provide the formal grammar of the sequencer language in the Backus–Naur form
(also known as the “BNF” format).

5.1 Basic language elements

ZMSP ::= [\t]* # zero or more spaces
OMSP ::= [\t]+ # one or more spaces
NEWLINE ::= (\n | \r\n | \r) # newline
COMMENT ::= ’\#’ .* # [until NEWLINE]
INTEGER ::= [0-9]+
ADDRESS ::= ((0x)?[0-9a-f]+)
NAME ::= [A-Za-z][0-9A-Za-z_]*

DURATION_UNIT ::= (’ns’ | ’us’ | ’ms’ | ’s’)
DURATION_VALUE ::= INTEGER SPACE* DURATION_UNIT

FILE ::= [0-9A-Za-z_\-\.\\\\]*

EMPTY_LINE ::= SPACE* COMMENT? NEWLINE

5.2 Mathematical expressions

Only a small subset of operators (addition, subtraction, multiplication and comparisons) are ac-
cepted.

CONSTANT_NAME ::= NAME

EXPR_CMP ::= (EXPR_ADD SPACE*
(’==’ | ’!=’ | ’<=’ | ’<’ | ’>=’ | ’>’)
SPACE* EXPR_ADD) | EXPR_ADD

EXPR_ADD ::= EXPR_MUL (SPACE* (’+’ | ’-’) SPACE* EXPR_MUL)*

EXPR_MUL ::= EXPR_ATOM (SPACE* ’*’ SPACE* EXPR_ATOM)*

EXPR_ATOM ::= ’(’ SPACE* EXPR_ADD SPACE* ’)’ |
INTEGER | CONSTANT_NAME

38

DRAFT

EXPRESSION ::= EXPR_CMP

5.3 Included files

FILE_NAME ::= FILE

INCLUDE_DEF_LINE ::= SPACE* FILE_NAME SPACE* COMMENT? NEWLINE

INCLUDE_SECTION_MARKER ::= ’[includes]’ SPACE* COMMENT? NEWLINE

INCLUDE_SECTION ::=
INCLUDE_SECTION_MARKER (EMPTY_LINE | INCLUDE_DEF_LINE)*

5.4 Global parameters (“constants”)

CONSTANT_NAME ::= NAME

CONSTANT_VALUE ::= DURATION_VALUE | EXPRESSION

CONSTANT_DEF_LINE ::=
SPACE* CONSTANT_NAME SPACE* ’:’
CONSTANT_VALUE SPACE* COMMENT? NEWLINE

CONSTANT_SECTION_MARKER ::= ’[constants]’ SPACE* COMMENT? NEWLINE

CONSTANT_SECTION ::=
CONSTANT_SECTION_MARKER (EMPTY_LINE | CONSTANT_DEF_LINE)*

5.5 Clock lines

CLOCK_NAME ::= NAME

CLOCK_ID ::= INTEGER

CLOCK_DEF_LINE ::=
SPACE* CLOCK_NAME SPACE* ’:’ CLOCK_ID SPACE* COMMENT? NEWLINE

CLOCK_SECTION_MARKER ::= ’[clocks]’ SPACE* COMMENT? NEWLINE

CLOCK_SECTION ::=
CLOCK_SECTION_MARKER (EMPTY_LINE | CLOCK_DEF_LINE)*

5.6 Indirect addressing (“pointers”)

REP_FUNC_NAME ::= NAME
REP_SUBR_NAME ::= NAME
PTR_FUNC_NAME ::= NAME
PTR_SUBR_NAME ::= NAME

39

DRAFT

REP_FUNC_DEF_LINE ::=
SPACE* ’REP_FUNC’ SPACE+ REP_FUNC_NAME
SPACE+ EXPR SPACE* COMMENT? NEWLINE

REP_SUBR_DEF_LINE ::=
SPACE* ’REP_SUBR’ SPACE+ REP_SUBR_NAME
SPACE+ EXPR SPACE* COMMENT? NEWLINE

PTR_FUNC_DEF_LINE ::=
SPACE* ’PTR_FUNC’ SPACE+ PTR_FUNC_NAME
SPACE+ (FUNC_NAME | FUNC_ID) SPACE* COMMENT? NEWLINE

PTR_SUBR_DEF_LINE ::=
SPACE* ’PTR_SUBR’ SPACE+ PTR_SUBR_NAME
SPACE+ (SUBR_NAME | ADDRESS) SPACE* COMMENT? NEWLINE

MAIN_DEF_LINE ::=
SPACE* ’MAIN’ SPACE+ PTR_SUBR_NAME
SPACE+ (SUBR_NAME | ADDRESS) SPACE* COMMENT? NEWLINE

PTR_DEF_LINE ::= (REP_FUNC_DEF_LINE | REP_SUBR_DEF_LINE |
PTR_FUNC_DEF_LINE | PTR_SUBR_DEF_LINE |
MAIN_DEF_LINE)

PTR_SECTION_MARKER ::= ’[pointers]’ SPACE* COMMENT? NEWLINE

PTR_SECTION ::=
PTR_SECTION_MARKER (EMPTY_LINE | PTR_DEF_LINE)*

5.7 Sequencer functions

FUNC_NAME ::= NAME

FUNC_ID ::= INTEGER

FUNC_NAME_DEF_LINE ::=
SPACE* FUNC_NAME SPACE* ’:’ SPACE* COMMENT? NEWLINE

FUNC_CLOCKS_MARKER ::= ’clocks’

FUNC_CLOCKS_NAMES_LINE ::=
SPACE* FUNC_CLOCKS_MARKER SPACE* ’:’
SPACE* CLOCK_NAME SPACE* (’,’ SPACE* CLOCK_NAME SPACE*)*

FUNC_SLICES_MARKER ::= ’slices’

FUNC_SLICES_MARKER_LINE ::=
SPACE* FUNC_SLICES_MARKER SPACE* ’:’ SPACE* COMMENT? NEWLINE

FUNC_SLICE_DEF_LINE ::=
SPACE* (DURATION_VALUE | CONSTANT_NAME) SPACE* ’=’
SPACE* (’0’ | ’1’) SPACE* (’,’ SPACE* (’0’ | ’1’) SPACE*)*

40

DRAFT

SPACE* COMMENT? NEWLINE

FUNC_SLICES_DEFS_BLOCK ::=
FUNC_SLICES_MARKER_LINE
EMPTY_LINE*
FUNC_SLICE_DEF_LINE
(FUNC_SLICE_DEF_LINE | EMPTY_LINE)*

FUNC_CONSTANTS_MARKER ::= ’constants’

FUNC_CONSTANTS_DEFS_LINE ::=
SPACE* FUNC_CONSTANTS_MARKER SPACE* ’:’
SPACE* CLOCK_NAME SPACE* ’=’ SPACE* (’0’ | ’1’)
(’,’ SPACE* CLOCK_NAME SPACE* ’=’ SPACE* (’0’ | ’1’))*
SPACE* COMMENT? NEWLINE

FUNC_DEF_BLOCK ::=
FUNC_NAME_DEF_LINE
EMPTY_LINE*
FUNC_CLOCKS_NAMES_LINE
EMPTY_LINE*
FUNC_SLICES_DEFS_BLOCK
EMPTY_LINE*
FUNC_CONSTANTS_DEFS_LINE?
EMPTY_LINE*

FUNC_SECTION ::= FUNC_SECTION_MARKER FUNC_DEF_BLOCK*

5.8 Subroutines and main programs

SUBR_NAME ::= NAME

INSTR_CALL_LINE ::=
SPACE* ’CALL’ SPACE+
((’@’ (PTR_FUNC_NAME | ADDRESS)) | FUNC_ID | FUNC_NAME)
(SPACE+ ’repeat(’ SPACE*
((’@’ (REP_FUNC_NAME | ADDRESS)) |

EXPRESSION | ’Inf’) SPACE* ’)’)
SPACE* COMMENT? NEWLINE

INSTR_JSR_LINE ::=
SPACE* ’JSR’ SPACE+
((’@’ (PTR_SUBR_NAME | ADDRESS)) | ADDRESS | SUBR_NAME)
(SPACE+ ’repeat(’ SPACE*
((’@’ (REP_SUBR_NAME | ADDRESS)) |

EXPRESSION) SPACE* ’)’)
SPACE* COMMENT? NEWLINE

INSTR_RTS_LINE ::=
SPACE* ’RTS’ SPACE* COMMENT? NEWLINE

INSTR_END_LINE ::=
SPACE* ’END’ SPACE* COMMENT? NEWLINE

41

DRAFT

INSTR_SET_BLOCK ::=
SPACE* ’SET’ SPACE+ CONSTANT_NAME
SPACE+ EXPRESSION SPACE* COMMENT? NEWLINE

INSTR_WHILE_BEGIN ::=
SPACE* ’WHILE’ SPACE+ EXPRESSION SPACE+
’DO’ SPACE* COMMENT? NEWLINE

INSTR_WHILE_END ::=
SPACE* ’DONE’ SPACE* COMMENT? NEWLINE

INSTR_WHILE_BLOCK ::=
INSTR_WHILE_BEGIN
INSTR_BLOCK
INSTR_WHILE_END

INSTR_IF_BEGIN ::=
SPACE* ’IF’ SPACE+ EXPRESSION SPACE+
’THEN’ SPACE* COMMENT? NEWLINE

INSTR_IF_END ::=
SPACE* ’FI’ SPACE* COMMENT? NEWLINE

INSTR_IF_BLOCK ::=
INSTR_IF_BEGIN
INSTR_BLOCK
INSTR_IF_END

INSTR_BLOCK ::=
(INSTR_SET_BLOCK | INSTR_WHILE_BLOCK |

INSTR_IF_BLOCK | INSTR_CALL_LINE |
INSTR_JSR_LINE | EMPTY_LINE)*

SUBR_NAME_DEF_LINE ::=
SPACE* SUBR_NAME SPACE* ’:’ SPACE* COMMENT? NEWLINE

SUBR_DEF_BLOCK ::=
SUBR_NAME_DEF_LINE
INSTR_BLOCK
INSTR_RTS_LINE

MAIN_DEF_BLOCK ::=
SUBR_NAME_DEF_LINE
INSTR_BLOCK
INSTR_END_LINE

SUBR_SECTION ::= SUBR_SECTION_MARKER SUBR_DEF_BLOCK*

MAIN_SECTION ::= MAIN_SECTION_MARKER MAIN_DEF_BLOCK*

5.9 Triggers

42

DRAFT

TRIGGER_ID ::= INTEGER

TRIGGER_VALUE ::= SUBR_NAME

TRIGGER_DEF_LINE ::=
SPACE* TRIGGER_ID SPACE* ’:’
SPACE* TRIGGER_VALUE SPACE* COMMENT? NEWLINE

TRIGGER_SECTION_MARKER ::= ’[triggers]’ SPACE* COMMENT? NEWLINE

TRIGGER_SECTION ::=
TRIGGER_SECTION_MARKER (EMPTY_LINE | TRIGGER_DEF_LINE)*

5.10 Sequencer file structure

SEQ ::=
CONSTANT_SECTION
CLOCK_SECTION
PTR_SECTION?
FUNC_SECTION
SUBR_SECTION?
MAIN_SECTION
TRIGGER_SECTION?

43

	Introduction
	Purpose and scope of this document
	Applicable Documents and Reference Documents
	Acronyms

	Language description
	Sequencer file structure
	Including definitions from other files: [includes]
	Sequencer global parameters: [constants]
	Sequencer output lines: [clocks]
	The elementary clocking sequences: [functions]
	Writing the sequencer program: [mains] and [subroutines]
	Program instructions
	Calling a sequencer function: direct and indirect addressing
	Jumping to a subroutine: direct and indirect addressing
	Defining a main program / auxiliary subroutine
	Indirect addressing: pointers
	Advanced sequencer programming

	Sequencer trigger mechanism
	Main program pointer
	Triggers: [triggers]

	Sequencer examples
	Simple sequencer
	Special flat sequence
	Reverse clocking to measure non-linearity

	Sequencer program compilation
	Available compilers and tools
	CCS java classes
	Standalone python tools
	Low level acquisition tools

	Compilation process
	Compiled sequencer programs: file format
	Compiled program: complete example

	Language grammar
	Basic language elements
	Mathematical expressions
	Included files
	Global parameters (``constants'')
	Clock lines
	Indirect addressing (``pointers'')
	Sequencer functions
	Subroutines and main programs
	Triggers
	Sequencer file structure

