
LPNHE testbench for the LSST sensors
Status report on the Control Software

Claire Juramy, Laurent Le Guillou, Eduardo Sepúlveda

Abstract

We describe the current state of the control software for the LSST sensor testbench at LPNHE. To be able
to proceed with all the planned tests and measurements of the LSST sensors, our philosophy was to reuse
as much existing code as possible and glue them together using the XML-RPC protocol and some Python
scripting. Scripting facilities are critical as many tests have to be automatized, and at the same time testing
procedures should be very easy to modify, adapt, deploy and recycle. The remaining question is to find an
efficient way to interface the existing software with the LSST CCS: there may be different answers depending
of the various ways the LPNHE testbench will be used (sensor studies, LSST CCD production tests, etc).

Contents

1 Brief overview of the bench 1

2 Control of the testbench instruments 3
2.1 Light sources . 3

2.1.1 Lasers ThorLabs . 3
2.1.2 Lamps . 3

2.2 Devices controlled by TTL signals: shutters, filter wheel, flipping mirror 4
2.3 Monochromator Triax . 4
2.4 Cryostat instruments . 5
2.5 Motors . 5

2.5.1 XYZ mounting . 5
2.5.2 Picomotor . 6

2.6 Keithley Multimeters/Electrometers . 6
2.7 Small CCD camera for tests . 6

3 REB slow control 6
3.1 Bash scripts . 7
3.2 Low-level Python interface: PyREB . 7

3.2.1 REB basic operations . 7
3.2.2 Clock sequences . 7
3.2.3 Programing the sequencer . 8

3.3 Editing Clock sequences: timeslots . 9

4 Software integration and scripting 9

1 Brief overview of the bench

The main elements of LPNHE testbench for the LSST sensors are described on fig. 1. This testbench will be
used for several CCD tests and sensors studies: the LSST sensors production testing, but also for PTC studies,
to quantify charge diffusion, for the optimization of the CCD clocking sequences, and so on. As this bench
will be used in several different setups (flat illumination, spots, fringes, etc.), and for many different tasks, its
control software needs to be modular and very flexible.

Nearly all the available instruments and devices (except the REB) are connected via RS-232 (or RS-232 over
USB) to a Linux box (Ubuntu). The Agilent power supply is controlled through an ethernet link, as well as the
New Focus Picomotor motors.

1

LPNHE testbench for the LSST sensors Status report on the control software

LakeShore

Pfeiffer

monochromator

Triax

lamp

QTH

cryostat
shutter

safety shutter

fiber bundle

lamp

XeHg

Laser ThorLabs

fibers

filter wheel

flipping mirror

sphere

Integrating
CCD

REB

Figure 1: Scheme of the LPNHE testbench for the LSST sensors.

Instrument link port host

Monochromator Triax RS-232 /dev/ttyUSB0 lpnlsst
Picoammeter Keithley 6514 RS-232 /dev/ttyUSB1 lpnlsst
Oriel XeHg Lamp RS-232 /dev/ttyUSB2 lpnlsst
Oriel QTH Lamp RS-232 /dev/ttyUSB3 lpnlsst
Oriel QTH flux control RS-232 /dev/ttyUSB6 lpnlsst
Picoammeter Keithley 6487 RS-232 /dev/ttyUSB5 lpnlsst
Laser ThorLabs RS-232 /dev/ttyUSB8 lpnlsst
Agilent power supply Ethernet
New Focus picomotor controller Ethernet/RS-232
Filter Wheel (TTL) NI board lpnlsst
Flipping mirror (TTL) NI board lpnlsst
Safety shutter (TTL) NI board lpnlsst

Table 1: Instruments and devices of the bench

2

LPNHE testbench for the LSST sensors Status report on the control software

2 Control of the testbench instruments

For the large majority of the available instruments and devices on the LSST sensors testbench, we (E. Sepúlveda)
already wrote more than one year ago several control panels in C++, with Qt as the underlying library. Qt of-
fers facilities for the GUI as well as the RS-232 serial port. We adapted these existing programs (by adding
XML-RPC remote functions) to integrate them with the Python scripting environment.

For a few instruments, we also wrote and recycle native Python drivers.

2.1 Light sources

2.1.1 Lasers ThorLabs

The ThorLabs laser device has four laser diodes with the following wavelengths: 406 nm, 635 nm, 808 nm and
980 nm. Each diode output is sent through a fiber to the integrating sphere. It is controlled by RS-232 (through
a RSR-232 to USB converter) and appears on /dev/ttyUSB8 on lpnlsst.

Figure 2: ThorLabs lasers. On the left, the Thorlabs box with its frontend and the fibers connected on the four outputs. On
the right, the C++/Qt GUI to control it.

The C++/Qt control panel for this device is launched by:

lsstprod@lpnlsst:~> laserthorlabs /dev/ttyUSB8 &

The GUI in fig. 2 allows to select the diodes to turn on, and to set up the current for each diode. The “en-
able” command will activate the light emission once a diode has been selected, and the “disable” to stop light
emission (otherwise the 635 nm diode still emits some light).

This program also has an integrated XML-RPC server (port 8082 on lpnlsst) in order to control the lasers
remotely, for scripting purposes (see section 4).

2.1.2 Lamps

We have two lamps: an halogen (QTH, the default one) and a XeHg lamp. The QTH lamp output can be regu-
lated (but it is important to let the lamp warm before trying to regulate its output). Both lamps are controlled
by the oriel C++/Qt program (two program instances should be run to control both lamps), launched by the
command:

lsstprod@lpnlsst:~> oriel /dev/ttyUSB2 &

The control panel is shown on fig. 3.
This program has an integrated XML-RPC server (port 8084 for the QTH and 8085 for the XeHg lamp) on

lpnlsst) in order to control the lamps remotely, for scripting purposes (see section 4).

3

LPNHE testbench for the LSST sensors Status report on the control software

Figure 3: Left: the two lamps (QTH and XeHg) and the flipping mirror. Right: the lamp control panel for the XeHg lamp.

2.2 Devices controlled by TTL signals: shutters, filter wheel, flipping mirror

Several devices on the sensors testbench are controlled by sending TTL signals: two shutters (at the entrance of
the monochromator, and at the entrance of the integrating sphere), the filter wheel before the monochromator,
and a flipping mirror to select one of the two available lamps (see 2.1.2). All these devices are connected to
a National Instrument board which sends the needed TTL signals. This board is controlled by the following
C++/Qt program:

lsstprod@lpnlsst:~> ttl &

Figure 4: Left: the filter wheel and the safety shutter. Right: the control panel for the TTL signals for the shutters, the filter
wheel and the flipping mirror.

For the shutters, the only possible actions are to open or to close them. The filter wheel has a home proce-
dure which should be called first. Then each move command will rotate the wheel to the next filter position.
For the flipping mirror, it is either “on” (QTH) or “off” (XeHg).

Important note: For the CCD tests, in order to have a very precise exposure duration, the shutter mounted
on the integrating sphere (“Melles shutter”) will be controlled directly by the REB, and not by this program.
The other shutter (at the entrance of the monochromator) is only used for safety reasons (the high UV emission
from the Hg lamp which is quite dangerous for the eyes) and its timing is not critical.

This program has an integrated XML-RPC server (port 8083 on lpnlsst) in order to control the shutters
(mainly the safety one), the filter wheel and the mirror remotely, for scripting purposes (see 4).

2.3 Monochromator Triax

The Triax monochromator (fig. 5) has three gratings mounted on a single turret. It is possible to select the
grating, select the chosen wavelength, and adjust the width of the entrance and exit slits.

The C++/Qt program to control the monochromator is launched by the command:

4

LPNHE testbench for the LSST sensors Status report on the control software

lsstprod@lpnlsst:~> triax &

This software properly manages the dialog with the monochromator controller, by checking that a request
action is finished before sending a new request (otherwise the monochromator may block and should be power
cycled).

Figure 5: Left: the Triax monochromator. Right: the monochromator control panel.

The triax program has an integrated XML-RPC server for scripting purposes (see 4).

2.4 Cryostat instruments

The thermal regulation of the CCD in the cryostat is controlled with a LakeShore. The cryostat pressure is
also monitored with a pressure gauge (Pfeiffer); an external electronic device disabled the cooling in case of a
vacuum leak. Both instruments are controlled by two C++/Qt programs.

2.5 Motors

2.5.1 XYZ mounting

On this bench we can also project sub-pixel light spots on the CCD sensor, using micrometric holes and a
microscope objective fixed on a motorized XYZ mounting, to be able to focus and move the spots (see fig. 6).
The XYZ mounting (Pollux linear motors) is controlled by a Python module lsst.testbench.xyz, and can
also be used directly from the command line with two Python scripts xyz-position and xyz-move.

Figure 6: Left: the Pollux XYZ mounting and the Edmund microscope objective to produce subpixel spots on the CCD.
Right: the fringe projector.

5

LPNHE testbench for the LSST sensors Status report on the control software

2.5.2 Picomotor

In order to do MTF measurements on the CCDs (to study the PTC), we use a laser and a Michelson interfer-
ometer (see fig 6) to project controlled fringes on the CCD sensor (fringes projection). The precise position and
angle of the two interferometer mirrors are controlled by three piezo motors (New Focus Picomotor), for which
we wrote two pieces of software:

• A C++/Qt GUI picomotor to control the 6 picomotors (mainly to avoid the vibrations generated when
we manipulate the mirrors screws by hand);

• A minimal Python module (lsst.testbench.picomotor) to automatize the operation of the fringes
projector while taking CCD images at the same time.

2.6 Keithley Multimeters/Electrometers

On the LSST sensor testbench we use several Keithley multimeters/electrometers as picoammeter, mainly to
measure the current from various photodiodes, in order to monitor the light flux (output of the integrating
sphere, incident beam on the CCD). We use different models: Keithley 2000, Keithley 6514, Keithley 6487 (this
one also provide the -70 V voltage for the CCD backsubstrate). All of them are controlled by SCPI commands
sent through a RS-232 link.

We have two ways to control them.
First, a C++/Qt control panel (shown on fig 7) may be launched for each Keithley multimeter connected:

lsstprod@lpnlsst:~> keithley /dev/ttyUSB1 &

This program allows to do sequences of current measurements in various ways and to save them to ASCII
data files. For the Keithley 6487 an extra tab in the GUI automatically appears and allows to set up the output
voltage and its current limit. It is currently used to provide the -70 V voltage for the CCD backsubstrate.

Figure 7: Control panel for two Keithleys picoammeters.

Second, for more specific uses, a Python module lsst.testbench.keithley is also used, which offers
more flexibility and allows to use any combination of SCPI commands (current, charge, voltage measurements,
and so on).

2.7 Small CCD camera for tests

To validate several measurement methods we use a small amateur astronomer CCD camera (Imaging Source
DMK 41AU02.AS, visible on fig. 6 on the left picture). Depending of the setup, we control this camera either
using a video4linux based C++ code (v4lcamera), or through with a very minimal Python module based on
the Unicap library (lsst.testbench.dmk41au02as).

3 REB slow control

In this section, we describe the various pieces of software we are using for the slow control of the REB and the
CCD sensor. These codes are prototypes only aimed for this testbench. It could be interesting to implement
some features described here in the CCS (mainly for the sequencer).

6

LPNHE testbench for the LSST sensors Status report on the control software

3.1 Bash scripts
We (C. Juramy) wrote several Bash scripts to interact with the REB FPGA: they could be used to load the REB
configuration (clock sequences, sequencer programing, CABAC voltages) and to do various REB operation like
taking a bias, a dark, a CCD image, clearing the CCD, clearing the serial register, and so on.

[. . .]
#CABAC programing
r e g i s t e r s :
0 :OD0EM OD1EM OD0RM OD1RM
1 : IP0 IP1 IP2 IP3
2 : IS0 IS1 IS2 IRG
3 :GD OG RD SH
4 : SL Mux0Mux1 PulseEnaMuxEna00 0

r r i C l i e n t 2 wri te 0 x500010 0 xc5c5c5c5
r r i C l i e n t 2 wri te 0 x500011 0 x00000000
r r i C l i e n t 2 wri te 0 x500012 0 x00000000
r r i C l i e n t 2 wri te 0 x500013 0 xaa008000
r r i C l i e n t 2 wri te 0 x500014 0 x00000000

r r i C l i e n t 2 wri te 0 x500020 0 xc5c5c5c5
r r i C l i e n t 2 wri te 0 x500021 0 x00000000
r r i C l i e n t 2 wri te 0 x500022 0 x00000000
r r i C l i e n t 2 wri te 0 x500023 0 xaa008000
r r i C l i e n t 2 wri te 0 x500024 0 x00000000
[. . .]

These scripts work very well but are not that easy to adapt to various tasks. That is the main reason we
develop some more abstract control code.

3.2 Low-level Python interface: PyREB

To simplify the REB slow control and at the same time keep the flexibility needed for our sensor studies, we
(L. Le Guillou) wrote a Python module lsst.camera.reb for the REB slow control.

3.2.1 REB basic operations

The lsst.camera.reb Python module essentially rely on the rriClient program to read/write at the REB
FPGA subadresses. The low level read/write operations are done by successive calls to rriClient:

R = reb . REB(reb_id = reb_id)
a = R . read (0 x02)
l = R . read (address = 0x20 , n=4) # r e a d 4 words
R . wri te (address = 0x21 , 0 x3e45)

Various methods are provided to do simple operations: launching the sequencer main subroutine (REB.start(),
REB.stop()), getting/setting the internal clock (REB.time), getting the FPGA state (REB.state), triggering
operations, and so on.

3.2.2 Clock sequences

The 16 FPGA clock sequences (“functions”) may be loaded from a XML sequencer file, or created on the fly by
the script, like this:

f u n c _ l i n e _ t r a n s f e r = \
fpga . Function (name = " l i n e t r a n s f e r " ,

t imelengths = { 0 : 100 , # x10ns
1 : 1000 ,
2 : 1000 ,
3 : 1000 ,
4 : 1000 ,
5 : 1000 ,
6 : 1000 ,
7 : 1000 ,
8 : 1000 ,

7

LPNHE testbench for the LSST sensors Status report on the control software

9 : 0 } ,
#
. S . . . SPPPPRSSSCRRR
. H . . . T4321G321LSDU
outputs = { 0 : 0 b0000000000000011010111100 ,

1 : 0 b0000000000000111010111100 ,
2 : 0 b0000000000000110010111100 ,
3 : 0 b0000000000000110110111100 ,
4 : 0 b0000000000000100110111100 ,
5 : 0 b0000000000000101110111100 ,
6 : 0 b0000000000000001110111100 ,
7 : 0 b0000000000000011110111100 ,
8 : 0 b0000000000000011010111100 ,
9 : 0 })

The 16 “functions” may also be downloaded from the FPGA memory.
These features are needed for the optimization of the clocking sequences: this way, it is possible to take

many frames while slightly modifying the clocking scheme before each frame readout, like this:

t a k i n g a f rame
R . run_subroutine (’ acq ’)

a l t e r t h e c l o c k s e q u e n c e f o r t h e l i n e t r a n s f e r (s l o t 2)
f u n c _ l i n e _ t r a n s f e r = R . dump_function (2)
f u n c _ l i n e _ t r a n s f e r . t imelengths [2] −= 10 # d e c r e a s e d u r a t i o n o f s l i c e #2
send b a c k t h e m o d i f i e d f u n c t i o n i n t o t h e FPGA memory
R . send_funct ion (2 , f u n c _ l i n e _ t r a n s f e r)

t a k i n g a f rame
R . run_subroutine (’ acq ’)

3.2.3 Programing the sequencer

The REB sequencer program may be either loaded from the XML sequencer files (see below), or from a pseudo
assembling language like this:

[. . .]
program = """
main : JSR acq r e p e a t (1)

END

acq : JSR c l e a r r e p e a t (2)
CALL func (1) r e p e a t (1 0 0 0 0)
CALL func (6) r e p e a t (2 0 4 8)
JSR r e a d _ l i n e r e p e a t (2 0 2 0)
RTS

c l e a r : JSR c l e a r _ l i n e r e p e a t (2 0 2 0)
RTS

b i a s : CALL func (6) r e p e a t (5 5 0)
JSR r e a d _ l i n e r e p e a t (2 0 2 0)
RTS

r e a d _ l i n e : CALL func (2) r e p e a t (1) # l i n e t r a n s f e r
r e a d 550 p i x e l s (10 p r e s c a n + 512 + 28 o v e r s c a n)
CALL func (3) r e p e a t (5 5 0)
RTS

c l e a r _ l i n e : CALL func (5) r e p e a t (1)
CALL func (6) r e p e a t (5 5 0)
RTS

"""
l o a d i n g t h e d e f a u l t s e q u e n c e r program
R . load_program (program)

8

LPNHE testbench for the LSST sensors Status report on the control software

l a u n c h i n g a c l e a r 10 t i m e s
R . run_subroutine (’ c l e a r ’ , repeat = 10)

t a k i n g a b i a s
R . run_subroutine (’ b i a s ’)

t a k i n g a f rame
R . run_subroutine (’ acq ’)
[. . .]

Once the program has been loaded, each subroutine may be launched by calling the REB.run_subroutine(...)
method. An optional repeat argument may be provided.

The program in the FPGA memory may also be downloaded (REB.dump_progam()) and disassembled.

3.3 Editing Clock sequences: timeslots

To ease the modification of the clocking sequences, we (E. Sepúlveda) wrote a graphical editor, named timeslots
(see fig. 8). The sequences may be loaded, edited and saved in the XML sequencer format.

Figure 8: Editor timeslots for the clocking sequences.

4 Software integration and scripting

Scripting facilities are critical for the various sensor studies and tests we will run on this testbench. For the
moment, our solution is to combine the existing C++/Qt or Python drivers with some Python glue, and use
the XML-RPC protocol to remotely control the C++/Qt panels from the scripts. This solution has the advantage
that all the instruments do not need to be physically connected to the same computer: this setup is very flexible.

Here is an example of a minimal script commanding the REB and the laser Thorlabs to take flat illumina-
tions:

import sys , os , os . path
import time

9

LPNHE testbench for the LSST sensors Status report on the control software

import subprocess
import xmlrpcl ib

import l s s t . camera . reb as reb
i mp or t l s s t . camera . r e b . f p g a as f p g a

c o n n e c t t o t h e l a s e r T h o r l a b s
l a s e r = xmlrpcl ib . ServerProxy (" ht tp :// l p n l s s t : 8082 ")
l a s e r . connect ()

Connect t o t h e REB
reb_id = 2
R = reb . REB(reb_id = reb_id)

C o n f i g u r e t h e REB
sequencer = REB . Sequencer . f romxmlf i le (" sequencer . xml ")
f u n c s = s e q u e n c e r . f u n c t i o n s
program = s e q u e n c e r . program
R . s e n d _ f u n c t i o n s (f u n c s)
R . l oad_program (program)
R . send_sequencer (sequencer)

Compute image s i z e and c o n f i g u r e t h e REB a c c o r d i n g l y
r r i C l i e n t 2 w r i t e 0 x400005 0x0010F3D8
R . se t_ image_s ize (2020 * 550)

s t a r t i n g t h e c l o c k r e g i s t e r
R . fpga . s t a r t _ c l o c k ()

s e t and p r i n t t h e REB t ime (c o u l d be s e t t o Unix t imes tamp)
R . time = time . time () / 1 0 . 0 e−9
print R . time

s t a r t i n g t h e i m a g e C l i e n t p r o c e s s (r e q u e s t e d t o r e c e i v e t h e f r a m e s !)
subprocess . Popen (" imageClient %d" % reb_id , s h e l l =True)

l a u n c h i n g a c l e a r 10 t i m e s
R . run_subroutine (’ c l e a r ’ , repeat = 10)

t a k i n g a b i a s
time . s leep (1)
R . run_subroutine (’ b i a s ’)

Turn on t h e l a s e r
l a s e r . s e l e c t (2) # s e l e c t one o f t h e 4 l a s e r d i o d e s
l a s e r . se tCurrent (1 0 0 .)
l a s e r . enable ()

t a k i n g a f rame
R . run_subroutine (’ acq ’)

Turn o f f t h e l a s e r
l a s e r . d i s a b l e ()

10

