Expectations from Future SN Experiments

Nicolas Regnault nicolas.regnault@lpnhe.in2p3.fr

LPNHE - IN2P3 - CNRS - University Paris 6 and Paris 7

AMT Workshop

- A 🗄 🕨

Outline

- Measuring the Dark Energy Equation of State
 Type Ia Supernovae
- 2 Current and Future Supernova Surveys
 - A Second Generation Survey: SNLS
 - SNLS 3-Year Analysis
 - Current and Future Surveys
- 3 Expectations from Future Surveys
 - Statistical Improvements
 - Systematic Uncertainties

Outline

Measuring the Dark Energy Equation of State Type Ia Supernovae

2 Current and Future Supernova Surveys

- A Second Generation Survey: SNLS
- SNLS 3-Year Analysis
- Current and Future Surveys

3 Expectations from Future Surveys

- Statistical Improvements
- Systematic Uncertainties

Nicolas Regnault nicolas.regnault@lpnhe.in2p3.fr Expectations from Future SN Experiments

Current and Future Supernova Surveys Expectations from Future Surveys

Dark Energy

Type la Supernovae

Concordance model

The Universe seems to be flat (CMB) with a low matter density (clusters) and its energy density seems to be dominated by some repulsive dark energy (supernovae).

- Cosmological constant ?
- rolling scalar field ?
- modified gravity ?

Dark Energy Equation of State

•
$$p = w\rho$$
 $w < -1/3$

$$ho(z) \propto exp\left(\int 3rac{w(z)+1}{1+z}dz
ight)$$

イロト イポト イヨト イヨト

э

- $w = -1 \rightarrow \text{cosmological constant}$
- w > −1 → scalar fields
- $w < -1 \rightarrow$ exotic fields

Nicolas Regnault nicolas.regnault@lpnhe.in2p3.fr

Expectations from Future SN Experiments

Current and Future Supernova Surveys Expectations from Future Surveys

Luminosity Distance

Type la Supernovae

Standard Candles

$$\phi_{(\lambda_{obs})} = rac{L\left(\lambda_{obs}/(1+z)
ight)}{4\pi(1+z)d_{L}^{2}}$$

$$d_{L}(z) = (1+z)\frac{c}{H_{0}}\int dz' \left(\Omega_{M}(1+z')^{3} + \Omega_{X}\exp\left(\int_{0}^{z} 3\frac{1+w(z')}{1+z'}dz'\right) + \Omega_{k}(1+z)^{2}\right)$$

Nicolas Regnault nicolas.regnault@lpnhe.in2p3.fr

Expectations from Future SN Experiments

Current and Future Supernova Surveys Expectations from Future Surveys Type la Supernovae

Luminosity Distance

Exact or quasi-degeneracies

• The expansion history depends on the sum of 3 terms • the equation of state enters in only one of them • the equation of state enters in only one of them • need to know Ω_k (from CMB) • if w(z) arbitrary, relation between Ω_m and w(z)• even assuming a constant w, there remain a strong degeneracy • degeneracy • degeneracy • degeneracy

$$d_{L}(z) = (1+z)\frac{c}{H_{0}}\int dz' \left(\Omega_{M}(1+z')^{3} + \Omega_{X}\exp\left(\int_{0}^{z} 3\frac{1+w(z')}{1+z'}dz'\right) + \Omega_{k}(1+z)^{2}\right)$$

Measuring the Dark Energy Equation of State Current and Future Supernova Surveys

ent and Future Supernova Surveys Type Expectations from Future Surveys

Type la Supernovae

Type la Supernovae

- very luminous $(10^{10} 10^{11}L_{\odot})$
- can be identified (spectra)
- fluctuations of $L_{max} \sim 40\%$
- $\bullet\,$ can be reduced to $\sim 14\%\,$

Nicolas Regnault nicolas.regnault@lpnhe.in2p3.fr

- **→** → **→**

Current and Future Supernova Surveys Expectations from Future Surveys

Type la Supernovae

Type la Supernovae

Nicolas Regnault nicolas.regnault@lpnhe.in2p3.fr

Expectations from Future SN Experiments

Current and Future Supernova Surveys Expectations from Future Surveys Type la Supernovae

< E

Standardization Relations

Current and Future Supernova Surveys Expectations from Future Surveys Type la Supernovae

Measuring Luminosity Distances w/ SNe Ia

$$\frac{f(z_1, T_{rest})}{f(z_2, T_{rest})} = \left(\frac{d_L(z_2)}{d_L(z_1)}\right)^2$$

- Restframe apparent luminosity @ peak, in a given spectral region
- decline rate / lightcurve width \Rightarrow good sampling of LC

- A 🗄 🕨

 color ⇒ observations in several passbands

Current and Future Supernova Surveys Expectations from Future Surveys Type la Supernovae

Measuring Luminosity Distances w/ SNe Ia

$$\frac{f(z_1, T_{rest})}{f(z_2, T_{rest})} = \left(\frac{d_L(z_2)}{d_L(z_1)}\right)^2$$

Current and Future Supernova Surveys Expectations from Future Surveys

Hubble Diagram

Restframe Magnitude

$$m_B^{\star} = -2.5 \log_{10} \left(\frac{f(z, T_B, t = t_{max,B})}{(1+z) \int \phi_{ref}(\lambda) T_B(\lambda) d\lambda} \right)$$

Distance Estimator

$$\mu_{B} = m_{B}^{\star} - \mathcal{M}_{\mathcal{B}} - \alpha \ (s-1) + \beta \ c$$

Cosmological Fit

 σ

$$\chi^{2} = \sum_{i} \frac{\mu_{B_{i}} - 5 \log_{10} d_{L}(\theta, z_{i})^{2}}{\sigma^{2}(\mu_{B_{i}}) + \sigma_{int}^{2}}$$

$$\tau_{int}=0.13~{
m mag}~(\chi^2/{
m dof}=1)$$

Nicolas Regnault nicolas.regnault@lpnhe.in2p3.fr

Expectations from Future SN Experiments

Type la Supernovae

Current and Future Supernova Surveys

Confidence Contours Astier et al. 2006

-0.6 $\Omega_M + \Omega_X = 1$ -0.8 SALS + Year ≥-1.2 -1.4 BAO (SDSS) -1.6 -1.8 0.2 0.3 0.4 0.5 0.6 0.1 Ω_M BAO = Baryon Accoustic Peak (Eisenstein, 2005) ۲ 68.3. 95.5 and 99.7 CL fit $(\Omega_m, \Omega_\Lambda)$ $(\Omega_m - \Omega_\Lambda, \Omega_m + \Omega_\Lambda)$

parameters (stat only) $(0.31 \pm 0.21, 0.80 \pm 0.31)$ $(-0.49 \pm 0.12, 1.11 \pm 0.52)$ $\Omega_m = 0.263 \pm 0.037$ $(\Omega_m, \Omega_\Lambda)$ flat $(\Omega_m, \Omega_\Lambda) + BAO$ $(0.271 \pm 0.020, 0.751 \pm 0.082)$

 $(0.271 \pm 0.021, -1.023 \pm 0.087)$

э

 $(\Omega_m, w) + BAO$ ・ 同 ト ・ ヨ ト ・ ヨ ト

Nicolas Regnault nicolas.regnault@lpnhe.in2p3.fr Expectations from Future SN Experiments

Type Ia Supernovae

-0.4

Systematic Uncertainties

Source	$\sigma(\Omega_m)$	$\sigma(\Omega_{tot})$	$\sigma(w)$	$\sigma(\Omega_m)$	$\sigma(w)$	
	(flat)			(with BAO)		
Zero-points	0.024	0.51	0.05	0.004	0.040	
Vega spectrum	0.012	0.02	0.03	0.003	0.024	
Filter bandpasses	0.007	0.01	0.02	0.002	0.013	
Malmquist bias	0.016	0.22	0.03	0.004	0.025	
Sum (sys)	0.032	0.55	0.07	0.007	0.054	
Sum (stat)	0.042	0.53	0.10	0.021	0.090	

(From Astier et al, 2006)

同 ト イ ヨ ト イ ヨ ト

A Second Generation Survey: SNLS SNLS 3-Year Analysis Current and Future Surveys

Outline

Measuring the Dark Energy Equation of State Type Ia Supernovae

2 Current and Future Supernova Surveys

- A Second Generation Survey: SNLS
- SNLS 3-Year Analysis
- Current and Future Surveys

3 Expectations from Future Surveys

- Statistical Improvements
- Systematic Uncertainties

A Second Generation Survey: SNLS SNLS 3-Year Analysis Current and Future Surveys

< 日 > < 同 > < 三 > < 三 >

The Supernova Legacy Survey

O(1000) SNe Ia – $10 \times$ present statistics

- detected before maximum
- followed-up in 4 passbands (g_M, r_M, i_M, z_M) (~ SDSS bands)
- a good sampling of the lightcurves (1 point every 3 days)
- spectroscopic identification of all the SNe Ia

Justifications

- One detector → control of calibration & selection bias
- Multiband obs. → follow same spectral region @ different z

BV @ z \sim 0	\rightarrow	gr @ z ~ 0.2
	\rightarrow	ri@z \sim 0.4
	\rightarrow	iz @ z \sim 0.8

Multiband obs. → redundant measurements of distances

A Second Generation Survey: SNLS

A Large Photometric Survey

\sim 300h / year on a 3.6-m

CEHT @ Hawaii

Wide Field Camera

- Megacam (CEA/DAPNIA)
- 1 deg², 36 2k×4k CCDs
- Good PSF sampling 1 pix = 0.2"
- Excellent image guality: 0.7" (FWHM)

Rolling search mode

- Component of the CFHTLS survey
- 40 nights / year during 5 years
- Four 1-deg² fields
- repeated observations (3-4 nights)
- in 4 bands (griz) •
- queue observing (minimize impact of bad weather)

Expectations from Future SN Experiments

< ロ > < 同 > < 回 > < 回 >

A Second Generation Survey: SNLS SNLS 3-Year Analysis Current and Future Surveys

▲ 同 ▶ → 三 ▶

... Operated in Rolling Search Mode

A Second Generation Survey: SNLS SNLS 3-Year Analysis Current and Future Surveys

A Large Spectroscopic Survey

Goals

- spectral identification of SNe Ia (z < 1)
- redshift determination (host galaxy lines)
- complementary programs
 - detailed studies of SNe Ia

Telescopes

- VLT large program (80h / semester)
- Gemini (60h / semester)
- Keck (30h / semester, Spring Semester)

(Howell et al, 2005 - ApJ 634, 1190)

・ロト ・同ト ・ヨト ・ヨト

A Second Generation Survey: SNLS SNLS 3-Year Analysis Current and Future Surveys

Statistics

Public list of candidates: http://legacy.astro.utoronto.ca

Telescope	SNIa (/?)	SNII (/?)	Total SN (/?)	Other	Total
Gemini	96	9	151	0	151
Keck	77	21	139	4	143
VLT	120	22	235	13	248
Total	293	52	525	17	542

\sim 500 Identified Type Ia Supernovae at the end of the Survey

Nicolas Regnault nicolas.regnault@lpnhe.in2p3.fr Expectations from Future SN Experiments

A Second Generation Survey: SNLS SNLS 3-Year Analysis Current and Future Surveys

SNLS 3 Year Hubble Diagram – Preliminary

Distance Estimator

$$\mu_B = m_B^{\star} - \mathcal{M} + (\alpha - 1) s - \beta c$$

Cosmology $\chi^{2} = \sum_{i} \frac{\mu_{B_{i}} - 5 \log_{10} d_{L}(\theta, z_{i})^{2}}{\sigma^{2}(\mu_{B_{i}}) + \sigma_{int}^{2}}$ • Minimize w.r.t. θ, α, β and \mathcal{M} . • σ_{int} so that $\chi^{2} = \text{NDOF}$ • marginalize over α, β and \mathcal{M} .

Nicolas Regnault nicolas.regnault@lpnhe.in2p3.fr Expectations from Future SN Experiments

A Second Generation Survey: SNLS SNLS 3-Year Analysis Current and Future Surveys

Current Surveys Nearby Supernova Surveys

Nearby Factory: $z \sim 0.05$

- 500 deg^2 / day
- Integral Field Spectrometer
- 5 years, from 2003.

SDSS-II: *z* ~ 0.35

• 300 deg², *ugriz*-bands, 3 years from 2005.

• \sim 300+ SNe Ia.

(日)

A Second Generation Survey: SNLS SNLS 3-Year Analysis Current and Future Surveys

Current Surveys Intermediate and Distant Supernova Surveys

SNLS @ CFHT: 0.2 < z < 1

- 4 deg², *ugriz*-bands, 5 years, started in 2003.
- \sim 500 SNe Ia.

ESSENCE @ CTIO: 0.2 < z < 0.8

- 8 deg², *RI*-bands, 5 years, started in 2002.
- ${\rm \bullet}~\sim 200$ SNe Ia.

$\mathsf{HST}/\mathsf{ACS}\ z>1$

• PANS (Riess et al), \sim 50 SNe, $< z > \sim 0.8$

Expectations from Future SN Experiments

A Second Generation Survey: SNLS SNLS 3-Year Analysis Current and Future Surveys

< 日 > < 同 > < 三 > < 三 >

Future Programs

Ground Based Projects

- Pan-Starrs (@HAWAII): 4 1.5-m telescopes, FOV=3 deg²
- Dark Energy Camera (@CTIO) FOV=3 deg², griz
- Large Synoptic Survey Telescope: one 8-m telescope, FOV=9 deg² (250000 SNe/year)

SNe Ia from Space

- JDEM/SNAP: 2-m telescope, 1 deg² FOV, $0.35\mu m 1.7\mu m$ spectrograph
- DUNE: 1.5-m telescope, 0.5 deg² FOV, 5 filters. No spectrograph

A Second Generation Survey: SNLS SNLS 3-Year Analysis Current and Future Surveys

LSST Design Telescope and Camera as a Single Instrument

- 8.4-m primary aperture
 - $\circ~\sim$ 6-m equivalent aperture
- 3.5 deg² FOV
- 3.2 GigaPixel Camera
 - \sim 200 4kimes4k CCDs
 - 6 filters
 - 65 cm diameter
- 30 sec Cadence
- Acc Depth: 27 mag (10 yr)

< ロ > < 同 > < 回 > < 回 >

• 18Tb / year

LSST

6-band Survey: ugrizy 320-1050 nm

- Sky area covered: 20,000 deg² 0.2 arcsec / pixel
- Each 9.6 sq.deg FOV revisited >300 times/band
- Time resolution: >20 sec
- + Limiting magnitude: 26.5 AB magnitude @10 σ (24.5 in u)
 - 24 AB mag in 15 seconds

< ロ > < 同 > < 回 > < 回 >

- Photometry precision: 0.01 mag requirement, 0.005 mag goal
- Galaxy density: 50 galaxies/sq.arcmin
- · 3 billion galaxies with color redshifts
- Time domain: Log sampling, seconds years

Outline

- Measuring the Dark Energy Equation of State
 Type Ia Supernovae
- 2 Current and Future Supernova Surveys
 - A Second Generation Survey: SNLS
 - SNLS 3-Year Analysis
 - Current and Future Surveys
- 3 Expectations from Future Surveys
 - Statistical Improvements
 - Systematic Uncertainties

Statistical Improvements Systematic Uncertainties

Statistical Improvements

Statistical Improvements Systematic Uncertainties

→ < ∃→

Forecasts for constant w (with BAO) Expected realistic statistical improvements of the (Ω_m, w) constraints

	Nearby	44	∞	44	132	132	250
	Distant	71	71	213	213	500	500
current	$\sigma(\Omega_m)$	0.023	0.019	0.019	0.019	0.018	0.018
BAO	$\sigma(w_0)$	0.088	0.073	0.076	0.064	0.060	0.055
BAO ×2	$\sigma(\Omega_m)$	0.016	0.014	0.014	0.013	0.013	0.013
(8000 deg^2)	$\sigma(w_0)$	0.081	0.062	0.067	0.054	0.049	0.044

Identified Sources of Systematics

- Photometric calibration & modeling of the passbands
- Empirical modeling of lightcurves
 - restframe region used: (B,V))
 ightarrow (U*,B) at large z
 - modeling of the SED in the far-UV is crucial for z > 0.8
- Detection biases
 - simulation of the detection pipeline
- Contamination
- Evolution effects
 - study of SN Ia properties as a function of Host Galaxy
 - comparison of nearby and distant SNe Ia
- Extinction by intergalactic dust
- Gravitational lensing

Statistical Improvements Systematic Uncertainties

Photometric Calibration

• Internal calibration

- linearity
- uniformity
- repeatability (stability of the calibration procedure)
- ADUs \rightarrow magnitudes
 - calibration into a photometric system (which relies on one primary spectrophotometric standard)
- $\bullet \ magnitudes \rightarrow physical \ fluxes$
 - integrate the (measured) primary standard spectrum into the instrument transmissions.

Statistical Improvements Systematic Uncertainties

Photometric Calibration (1/5)

Uniformity

- Modeling the non-uniformities of the photometric response
 - Plate scale variations
 - scattered light
- Dense stellar fields (RA=20:00:00, DEC=10:00:00)
- 13 dithered exposures variable steps: \sim 100 pixels \rightarrow half a camera

< □ > < □ >

- Reobserved after each significant modification of the optics
- No control observations
- grid corrections applied to the pixels by the Elixir pipeline (scatter flats or photometric flats)

Statistical Improvements Systematic Uncertainties

Photometric Calibration (1/5)Uniformity

・ 同 ト ・ ヨ ト ・ ヨ

Nicolas Regnault nicolas.regnault@lpnhe.in2p3.fr Expectations from Future SN Experiments

Statistical Improvements Systematic Uncertainties

Photometric Calibration (1/5)

2003B (Elixir Corrected)

Instrument uniformity

2005B (Elixir Corrected)

< □ > < □ >

0.01

ccd

Statistical Improvements Systematic Uncertainties

Photometric Calibration (2/5)

Magnitude Systems

Calibration system determined by the Nearby SN sample

(g: 2%, ri: 1%, z: 3%) Image: A image: A

Statistical Improvements Systematic Uncertainties

Photometric Calibration (3/3)Physical Spectrum of the Reference Star

• Luminosity distance ratios are a function of the reference spectrum integrated flux ratios in distinct bands:

$$\left(\frac{d_L(z_2=0.5)}{d_L(z_1=0)}\right)^2 = \propto 10^{-0.4(m_{ref}(R))-m_{ref}(B)} \frac{\int \phi_{ref}(\lambda)R(\lambda)d\lambda}{\int \phi_{ref}(\lambda)B(\lambda)d\lambda}$$

• New determinations of the Vega spectrum, based on WD stellar models, (Bohlin et al), compatible 0.01 with older calibrations (Hayes, 1985).

0.01 mag \Leftrightarrow 250 SNe Ia at $z\sim$ 0.5

Statistical Improvements Systematic Uncertainties

Instrumental Calibration: SNDICE

イロト イポト イヨト イヨト

Statistical Improvements Systematic Uncertainties

SN Ia Modeling

Nicolas Regnault nicolas.regnault@lpnhe.in2p3.fr

Statistical Improvements Systematic Uncertainties

SALT2: modeling SN Ia SED in the far-UV J. Guy et al, 2006

SALT2: J. Guy et al, 2006

- Use photometric and spectroscopic data
- PCA to describe SN variability
- Derive model uncertainties
- Modeling of SN Ia SED in the far UV

・ 一 ・ ・ ・ ・ ・ ・

Statistical Improvements Systematic Uncertainties

SALT2: modeling SN Ia SED in the far-UV J. Guy et al, 2006

SALT2: J. Guy et al, 2006

- trained on Nearby Data + SNLS data
- Far UV coverage comes from the intermediate-z SNLS objects
- Uncertainties can be reduced w/ more data (LC & spectra) @ intermediate redshift

$$\Rightarrow~{
m errors} \propto 1/\sqrt{N}$$

▲□ ► ▲ □ ► ▲

Statistical Improvements Systematic Uncertainties

SALT2: modeling SN Ia SED in the far-UV J. Guy et al, 2006

Statistical Improvements Systematic Uncertainties

Calibration + Training

Statistical Improvements Systematic Uncertainties

Selection Effects

- affects nearby sample and SNLS sample
- δΩ_m(Nearby SNe): +0.019 ± 0.012
- $\delta \Omega_m$ (SNLS SNe):-0.020 ± 0.010

Nicolas Regnault nicolas.regnault@lpnhe.in2p3.fr

▲ □ ▶ ▲ □ ▶ ▲

э

Statistical Improvements Systematic Uncertainties

Nearby Supernova Sample

- Only \sim 40 SNe with good lightcurve coverage at $z \sim 0,05$
- Evidences for systematic calibration errors in the *U*-band
- Selection bias of the nearby sample ?

- (Jha et al, 2007) says $H_0(cz < 7400 \text{ km/s}) < H_0(\text{homogeneous universe})$
- Local void in the mass density distribution
- (Conley et al, 2007), (Wang et al, 2007) show it is an artifact of the extinction corrections

Statistical Improvements Systematic Uncertainties

Contamination / SN Ia Identification

Combined fit of Lightcurves and Spectra

03D4dy at z = 0.604

Lightcurve fit (SALT2)

Spectrum fit (same model)

- **→** → **→**

A (1) > (1) = (1)

Evolution

- Different progenitors types with different lifetimes
- One single progenitor type w/ correlation between lifetime and luminosity
- Metallicity
- . . .
- \Rightarrow Comparisons between high- / low-z SN observables
- $\Rightarrow\,$ Comparisons SNe as a function of their host galaxy properties

Statistical Improvements Systematic Uncertainties

Evolution

Nicolas Regnault nicolas.regnault@lpnhe.in2p3.fr

Expectations from Future SN Experiments

Statistical Improvements Systematic Uncertainties

▲ 同 ▶ → ● 三

SN la Lightcurve Rise Time Conley et al, 2006

SN Ia evolution check

- Compare nearby and distant SN early lightcurve shape (B-band)
 - nearby: 19.58 ± 0.2
 - distant: $19.10 \pm 0.2(stat) \pm 0.2(sys)$

Nicolas Regnault nicolas.regnault@lpnhe.in2p3.fr Expectations from Future SN Experiments

Statistical Improvements Systematic Uncertainties

SN la Properties and Host Galaxies Sullivan, LeBorgne et al, 2006

SNe exploding in a high SFR environment

- display a larger stretch (and are brighter)
- ⇒ younger progenitors produce brighter SNe Ia ?

no impact on the distance measurement for the 1 year sample

・ 一 ・ ・ ・ ・ ・ ・

Statistical Improvements Systematic Uncertainties

▲ 同 ▶ → 三 ▶

Spectroscopic Measurements Bronder et al, ApJ accepted

SN la evolution check (relying on spectroscopic measurements)

- No systematic offset
- Dispersion increases with z: likely to be S/N

イロト イポト イヨト イヨト

Systematics

Many of the current "systematic uncertainties" are not systematics:

- Selection bias
- Evolution (SN Host galaxy classification)
- SN SED modeling
- gravitational lensing

Evolution

- We should see its effects when looking at the properties of SNe as a function of their host type (Sullivan et al.)
- Fit as many Hubble diagrams as there are types of galaxies
- Simple statistical test

Two major sources of systematic uncertainties today

- Flux calibration: how to convert mags into fluxes ?
- The nearby SN sample

Conclusion (I)

• Expected precision on w after the 2d generation surveys:

 $\pm 0.05(sys) \pm 0.05(stat)$

- Lessons for the future
 - More and better quality Nearby SNe badly needed:
 - SDSS, Nearby Factory, SkyMapper
- Most of the known systematic uncertainties are not systematics: they can be reduced with high- statistics (nearby and distant surveys).
- Need to reduce the photometric calibration uncertainty, down to 0.1% (1-3% today).

4 B 6 4 B

- internal (uniformity, stability, linearity)
- external (standard catalogs, primary standard)

Statistical Improvements Systematic Uncertainties

Photometric Calibration (2/5)

Passband Intercalibration

Nicolas Regnault nicolas.regnault@lpnhe.in2p3.fr Expectations from Future SN Experiments

Statistical Improvements Systematic Uncertainties

- A - B - M

Offline Photometric Pipeline

- Differential photometry
- PSF photometry of the field stars
- Calibration of the DEEP fields
- Fit of multicolor lightcurves
- Luminosity Distance Estimation
- Cosmological Results
- Systematics

Statistical Improvements Systematic Uncertainties

SALT2

Expectations from Future SN Experiments

SALT2

- Same cosmology
- rms of Hubble diagram residuals 0.16 (0.20 in 1st year analysis)
- $\sigma(w)$ reduced by $\sim 20\%$
- figure of merit of DETF improved by 35%

Nicolas Regnault nicolas.regnault@lpnhe.in2p3.fr

Expectations from Future SN Experiments

Statistical Improvements Systematic Uncertainties

SIFTO Canadian SALT

Objects

- Spectral sequence of (Hsiao et al, 2007)
- Lightcurve templates with dense filter set
- Trained w/ SNLS and Nearby SN photometry

э

Conclusion

SNLS is doing well

- ullet \sim 300 identified SNe Ia on disk
- $\bullet~\sim 500$ identified SNe Ia at the end of the survey (mid-2008)
 - impact of wheather on data taking (!)

Close to a 3-year Cosmology Analysis

- We have learned a lot during the last 3 years
 - SN modeling (UV), SN properties versus host
 - Large effort on calibration
- $\bullet\,$ Statistical uncertainties improved by a factor ~ 2
- Close to the systematics limit
- Data quality allow us to improve on systematics