Supernovae and Cosmology

Nicolas Regnault for the SNLS Collaboration nicolas.regnault@lpnhe.in2p3.fr

LPNHE - IN2P3 - CNRS - Universités Paris 6 et Paris 7

Gentner Colloquium, Heidelberg

Outline

1 Measuring the Dark Energy Equation of State

2 The SNLS Survey

Istances to the Cosmological Parameters

- Photometric Calibration
- Lightcurve Fitters
- Systematics

Outline

1 Measuring the Dark Energy Equation of State

2 The SNLS Survey

3 From Luminosity Distances to the Cosmological Parameters

- Photometric Calibration
- Lightcurve Fitters
- Systematics

Expansion History

On very large scales ($\sim 100 {\rm Mpc}),$ the Universe is <code>lsotropic</code> and <code>Homogeneous</code>

• Friedmann - Lemaître - Robertson - Walker (FLRW) Metric

$$ds^{2} = dt^{2} - \frac{\partial^{2}(t)}{\partial t^{2}} \times \left[\frac{dr}{1 - kr^{2}} + r^{2}\left(d\theta^{2} + \sin^{2}\theta \ d\phi^{2}\right)\right]$$

- Scale factor *a*(*t*)
 - common to all distances.
 - describes the expansion of the Universe.

Geometry

•
$$k = \begin{cases} +1 & \text{closed} \\ 0 & \text{flat} \\ -1 & \text{open} \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Friedmann Equation(s)

- General Relativity connects the properties of space-time (the metric) with the energy content of the Universe.
- $\bullet~\mbox{Einstein Equations} + \mbox{FLRW metric} \rightarrow \mbox{Friedmann Equations}$

$$H(t) \equiv \left(\frac{\dot{a}}{a}\right) = \frac{8\pi G}{3} \sum_{i} \rho_{i} + \frac{\Lambda}{3} - \frac{k}{a^{2}}$$

- Energy density
- Cosmological Constant
- Curvature
- ⇒ Mapping the expansion history of the Universe, allows one to obtain information on its energy contents (non-relativistic matter, radiation, ...)

. . .

Cosmological Parameters

• Critical Density $\rho = \rho_c(no\Lambda) \Leftrightarrow k = 0$

$$ho_c = 3H_0^2/8\pi G \sim 5 \text{ protons}/m^3 \ \sim 1 \text{ Galaxy}/Mpc^3$$

- Densities & equations of state of all fluids populating the universe, in units of $\rho_{\rm c}$
 - $\begin{array}{lll} \text{non relativistic matter} & \Omega_m & w_m = 0 & \rho_m \propto a^{-3} \\ \text{radiation} & \Omega_r & w_r = +1/3 & \rho_r \propto a^{-4} \\ \text{Cosmological Constant} & \Omega_\Lambda & w_\Lambda = -1 & \rho_\Lambda = \text{constant} \\ \text{Dark Energy} & \Omega_X & w_X = \ref{eq:matrix} < -1/3 & \rho_X \propto a^{-3(1+w_x)} \\ \end{array}$

Luminosity Distances

- Observables
 - redshift $z = \delta \lambda / \lambda$
 - apparent flux

• Luminosity distance $d_L(z)$

$$\phi(\lambda_{obs}) = \frac{L(\lambda_{obs}/(1+z))}{4\pi(1+z) \ d_{L}^{2}}$$

• integrated history of the expansion

$$d_L(z) = (1+z) S_k \left(rac{c}{H_0} \int_0^z rac{dz'}{\dot{a}/a}
ight)$$

• function of the cosmological parameters

$$d_{L}(z) = (1+z)S_{k}\left(\frac{c}{H_{0}}\int dz'\left(\Omega_{M}(1+z')^{3} + \Omega_{k}(1+z')^{2} + \Omega_{X}\exp\left(\int_{0}^{z} 3\frac{1+w(z')}{1+z'}dz'\right)\right)^{-\frac{1}{2}}$$

Hubble Diagram

900

Type la Supernovae

- very luminous $(10^{10} 10^{11} L_{\odot})$
- can be identified (spectra)
- fluctuations of $L_{max} \sim 40\%$
- $\bullet\,$ can be reduced to $\sim 14\%\,$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Supernova Lightcurves

Analysis 0000000

Supernova Lightcurves

Measuring Luminosity Distances

- Measure supernova apparent luminosity @ peak, in a reference spectral region
- Use additional observables to improve distance indicator
 - lightcurve width / stretch
 (⇒ good sampling of lightcurve)
 - color (⇒ observations in several passbands)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Analysis 00000000

Accelerated Expansion (Riess et al. 1998), (Perlmutter et al. 1999)

Accelerated Expansion (Perlmutter et al. 1999)

- Unknown Energy Density: Ω_X
- First weak constraints on w_X (assuming a flat Universe)

$$w_X < -1/3$$
 (90% CL)

▲ロト ▲理 ▶ ▲ ヨ ▶ ▲ ヨ ■ ● の Q (?)

Analysis 00000000

Concordance Model

The Universe seems to be flat (CMB) with a low matter density (clusters) and its energy density seems to be dominated by some repulsive dark energy (supernovae).

Dark Energy Equation of State

•
$$p = w \rho$$
 $w < -1/3$

$$ho(z) \propto exp\left(\int 3rac{w(z)+1}{1+z}dz
ight)$$

- $w = -1 \rightarrow \text{cosmological constant}$
- $w > -1 \rightarrow$ scalar fields
- $w < -1 \rightarrow$ exotic fields

The SNLS Survey

Analysis

2004: SNe from Space (GOOD / ACS Survey) (Riess, 2004)

- Find z > 1.2 SNe Ia with HST
- 16 + 21 SNe Ia found w/ ACS. Among them, 23 SNe @ z > 1.

• Probe the deceleration era

The SNLS Survey

Analysis

2004: SNe from Space (GOOD / ACS Survey) (Riess, 2004)

- Hubble diagram up to $z \sim 2$
- Expansion went from deceleration to acceleration
- Exclude grey dust hypothesis

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Analysis 0000000

ACS Lightcurves (restframe UV) & Spectra

 Large calibration uncertainties

The SNLS Survey

Analysis 0000000

Constraints on w and w'Riess et al, 2004

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Second Generation Supernova Programs

- Low redshift
 - CfA
 - Kait (UCB)
 - Carnegie
 - SN Factory / SNIFS
- Medium redshift (0.1 < z < 0.3)
 - SDSS-II (SN)
- High-z Programs
 - ESSENCE
 - SNLS
- Ongoing space programs with ACS/HST
 - PANS (Riess et al)
 - Clusters (Perlmutter et al)
 - now stopped due to ACS failure

The SNLS Survey

Analysis 0000000

Today "Union Sample" (Kowalski et al, 2008)

The SNLS Survey

Analysis 0000000

Today

The SNLS Survey

Analysis 0000000

Today

Outline

Measuring the Dark Energy Equation of State

2 The SNLS Survey

3 From Luminosity Distances to the Cosmological Parameters

- Photometric Calibration
- Lightcurve Fitters
- Systematics

The SNLS Collaboration

SNLS: A Large Photometric Survey ...

\sim 300h / year on a 3.6-m

CFHT @ Hawaii

Wide Field Camera

- Megacam (CEA/DAPNIA)
- 1 deg², 36 2k×4k CCDs
- Good PSF sampling 1 pix = 0.2"
- Excellent image quality: 0.7" (FWHM)

Rolling search mode

- Component of the CFHTLS survey
- 40 nights / year during 5 years
- Four 1-deg² fields
- repeated observations (3-4 nights)
- in 4 bands (griz)
- queue observing (minimize impact of bad weather)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

SNLS: A Large Photometric Survey ...

The SNLS Survey

Analysis 0000000

... Operated in Rolling Search Mode

▲ロト ▲理ト ▲理ト ▲理ト 三臣 - のQで

... and a Large Spectroscopic Survey

Goals

- spectral identification of SNe Ia (z < 1)
- redshift determination (host galaxy lines)
- complementary programs
 - detailed studies of SNe Ia

Telescopes

- VLT large program (120h / year)
- Gemini (120h / year)
- Keck (30h / year)

(Howell et al, 2005 - ApJ 634, 1190)

Statistics

Public list of candidates: http://legacy.astro.utoronto.ca

May 2008					
Telescope	SNIa (/?)	SNII (/?)	Total SN (/?)	Other	Total
Gemini	131	13	235	0	235
Keck	91	22	195	4	199
VLT	156	21	309	12	321
Total	378	56	739	16	755

\sim 400 Identified Type Ia Supernovae now on disk \sim similar number with photometric identification

Survey ended in June 2008

Statistics

Public list of candidates: http://legacy.astro.utoronto.ca

Outline

Measuring the Dark Energy Equation of State

2 The SNLS Survey

Istances to the Cosmological Parameters

- Photometric Calibration
- Lightcurve Fitters
- Systematics

Analysis Steps

• Detection

- two real time pipelines (Perret et al, Fouchez et al)
- merging of candidates
- ranking with photometric identification (Sullivan et al, 2005)
- Spectroscopic Identification
 - comparison with library of High-z SN spectra (Howell et al, 2005)
 - simultaneous fit of SN lightcurves and spectra (Baumont et al, 2008)
- Photometry
- Calibration
- Lightcurve fitting / distance estimates
- Cosmological constraints

Differential Photometry

The Model: Simultaneous fit on \sim 300 images

$$\begin{split} I(x,y) &= & \mathrm{Flux} \times [\mathrm{Kernel} \otimes \mathrm{PSF}_{\mathrm{best}}](x - x_{sn}, y - y_{sn}) + \\ & & [\mathrm{Kernel} \otimes \mathrm{Galaxy}_{\mathrm{best}}](x,y) + \mathrm{Sky} \end{split}$$

(z = 0.95)

~ ~ ~ ~ ~

Differential Photometry (cont'd)

• Alternate technique

- PSF photometry on subtractions
 - convolution and alignment of best quality reference image to each science field independantely
 - subtraction
 - PSF photometry on subtraction
- First method chosen after comparison

Measuring Luminosity Distances with SNe Ia

900
Measuring Luminosity Distances with SNe Ia

$$\frac{f(z_1, T_{rest})}{f(z_2, T_{rest})} = \left(\frac{d_L(z_2)}{d_L(z_1)}\right)^2$$

- Restframe apparent luminosity @ peak, in a given spectral region
- decline rate / lightcurve width \Rightarrow good sampling of LC
- color ⇒ observations in several passbands

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Measuring Luminosity Distances with SNe Ia

$$\frac{f(z_1, T_{rest})}{f(z_2, T_{rest})} = \left(\frac{d_L(z_2)}{d_L(z_1)}\right)^2$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Outline

Measuring the Dark Energy Equation of State

2 The SNLS Survey

Istances to the Cosmological Parameters

- Photometric Calibration
- Lightcurve Fitters
- Systematics

The SNLS Survey

Analysis 0000000

Photometric Calibration (I) Uniformity of the Photometric Response

Wide field cameras have an intrinsically non-flat photometric response.

- Careful mapping of it using dithered observations.
- Residual non-uniformities $\sim 1\%$.

The SNLS Survey

Analysis

Photometric Calibration (II) Uniformity of the Photometric Response

\$dl\$ MAP 2005.5 i(ri)

Intrinsic filter non-uniformities (up to $\sim 5nm$).

Mapped with dithered observations.

Must be accounted for in the lightcurve fits.

The SNLS Survey

Analysis

Photometric Calibration (III) Intercalibrating the low-z and high-z data

- Low-z and High-z supernovae observed with different filter systems.
- We anchor the photometric calibration on the same standard star network.
- Large photometric corrections.
- Modeled with piecewise-linear transformations.
- Main source of systematics today (won't be the case with future low-z samples).

The SNLS Survey

Analysis

Photometric Calibration (IV) Intercalibrating the low-z and high-z data

• Traditional magnitude systems do not define their physical flux scale

$$\Phi = \Phi_0 \times 10^{-0.4m}$$

- We rely on a fundamental flux standard, with (1) a known spectrum and (2) known magnitudes, in order to convert magnitudes into fluxes
- The HST has selected 3 pure hydrogen white dwarfs as primary standards. Models of these stars' spectra were used to calibrate the HST instruments.
- This calibration was then propagated to a larger network of secondary HST standards. We use one of them, BD +17 4708 as our fundamental flux standard.

The SNLS Survey

Analysis 00000●0

Photometric Calibration (V)

The SNLS Survey

Analysis 000000

Photometric Calibration (VI) Uncertainty Budget

	g	r	i	Ζ
Zero Points	± 0.002	± 0.002	± 0.002	± 0.005
Background sub	< 0.001	< 0.001	± 0.005	< 0.001
Shutter	± 0.002	± 0.002	± 0.002	± 0.002
scd order airmass corrs.	< 0.001	< 0.001	< 0.001	< 0.001
grid reference colors	< 0.001	< 0.001	< 0.001	< 0.001
grid color corrs	< 0.001	< 0.001	± 0.002	< 0.001
Landolt catalogs	± 0.001	± 0.001	± 0.001	± 0.002
Magnitudes of BD $+17$	± 0.002	± 0.004	± 0.003	± 0.018
Total	± 0.004	± 0.005	± 0.007	± 0.0019

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Outline

Measuring the Dark Energy Equation of State

2 The SNLS Survey

Istances to the Cosmological Parameters

- Photometric Calibration
- Lightcurve Fitters
- Systematics

The SNLS Survey

Light Curve Fitters

- Goal: Measure flux ratio of SNe at different *z*
 - same (restframe) wavelength
 - same phase
 - different redshifts
- Method: Interpolation of measurements
 - in different restframe bands
 - with different time sampling
- Tool: Empirical model of the SN Ia spectral sequence
 - physical simulations not precise enough
 - model trained on a large sample of lightcurves and spectra
 - accounts for the diversity of SNe Ia

The SNLS Survey

Analysis

SALT2: modeling SN Ia Spectra and Lightcurves J. Guy et al, 2007

SALT2: J. Guy et al, 2007

- Use photometric and spectroscopic data
- PCA to describe SN variability
- Derive model uncertainties
- Modeling of SN Ia Spectra in the far UV

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

The SNLS Survey

Analysis

SALT2: modeling SN Ia Spectra and Lightcurves J. Guy et al, 2007

172. L Guy et al. 2007

- trained on Nearby Data + SNLS data
- Far UV coverage comes from the intermediate-z SNLS objects
- Uncertainties can be reduced w/ more data (LC & spectra) @ intermediate redshift

$$\Rightarrow~{
m errors} \propto 1/\sqrt{N}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

The SNLS Survey

Analysis

SALT2: modeling SN Ia Spectra and Lightcurves J. Guy et al, 2007

▲ロト ▲圖 ト ▲ 画 ト ▲ 画 - - - の Q ()・

Distance Estimator

• Distance modulus estimator

$$\mu_B = m_B^{\star} - M + \alpha \times (s-1) - \beta \times c$$

- brighter slower correlation
- brighter bluer correlation
- Empirical coefficients, fitted along with the cosmology: *M*, α , β
- β accounts for (1) host galaxy extinction (dust) and (2) intrinsic SN properties.
- Control evolution of β with z

The SNLS Survey

Hubble Diagram

Restframe Magnitude $m_B^{\star} =$ $-2.5 \log_{10} \left(\frac{f(z, T_B, t = t_{max,B})}{(1+z) \int \phi_{ref}(\lambda) T_B(\lambda) d\lambda} \right)$

Distance Estimator

$$\mu_B = {m_B}^\star - \mathcal{M}_\mathcal{B} - lpha \; (s-1) + eta \; c$$

Cosmological Fit

$$\chi^{2} = \sum_{i} \frac{\mu_{B_{i}} - 5 \log_{10} d_{L}(\theta, z_{i})^{2}}{\sigma^{2}(\mu_{B_{i}}) + \sigma_{int}^{2}}$$

$$\sigma_{int}=0.13~{
m mag}~(\chi^2/{
m dof}=1)$$

P

SNLS 3 Year Analysis

- statistics $\times 3.5~71~\rightarrow~\sim 250$
- Independant analyses (Fr, Ca), being carefully cross-checked
- Improved Photometric calibration
 - Better control of the Megacam array uniformity
 - 3-year monitoring of the same fields
- Improved Supernova modeling trained on the SNLS data
 - Two independant lightcurve fitters: SALT2 (Guy et al, 2007), SIFTO (Conley et al, 2008).
 - Allow to use the bluer part of the spectrum (z > 0.8)
- Detailed studies of the SN properties w.r.t. host galaxy type (elliptical \sim old, vs spiral \sim new)
 - tests for evolution of the SN properties with redshift
- Systematics included in the cosmological fits

The SNLS Survey

Analysis

SNLS 3 Year Analysis

The SNLS Survey

Analysis

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Cosmological Constraints Uncertainty Budget

 Uncertainties or 	ו <i>W</i> X	
statistical	0.077	
SNLS calib	0.053	
Low-z calib	0.032	
Low-z filters	0.016	plots/snls_3yr_w_contours.png
Low-z select. bias	0.022	
Lightcurve fitters	0.020	
Total sys	0.071	
Total stat + sys	0.104	

• (SNe + BAO (Eisenstein et al, 2005), assuming $\Omega_k = 0$)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Outline

Measuring the Dark Energy Equation of State

2 The SNLS Survey

Istances to the Cosmological Parameters

- Photometric Calibration
- Lightcurve Fitters
- Systematics

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Identified Sources of Systematics

- Photometric calibration & modeling of the passbands
- Empirical modeling of lightcurves
 - restframe region used: $(B, V)) \rightarrow (U^*, B)$ at large z
 - modeling of the SN Spectra around $\lambda \sim 300 {\rm nm}$ is crucial for z>0.8
- Detection biases
 - simulation of the detection pipeline
- Contamination
- Evolution effects
 - study of SN Ia properties as a function of Host Galaxy
 - comparison of nearby and distant SNe Ia
- Extinction by intergalactic dust
- Gravitational lensing

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Systematics: low-z vs. high-z

SNLS

- dominated by calibration uncertainties
 - 0.005 in gri , 0.025 in zband
- much smaller uncertainties from :
 - filters: well measured, in agreement with observed color terms
 - selection bias: controlled with image simulations
- low z sample
 - calibration uncertainties (linear color corrections or 'S'corrections)
 - 0.02 in Uband, 0.007 in BVR
 - filters (Landolt system is not a natural system)
 - 0.005 relative uncertainty on flux interpretation
 - selection bias (heterogeneous sample)
 - 0.01 uncertainty on average distance modulus

The SNLS Survey

Analysis

Understanding Color and Dust Extinction

Sac

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Evolution Tests

- Different progenitors types with different lifetimes
- One single progenitor type w/ correlation between lifetime and luminosity
- Metallicity
- . . .
- Two kinds of evolution tests
 - \Rightarrow Compare low- and high-redshift events (Bronder et al. 2007)
 - ⇒ More sensitive: compare events at similar redshifts as a function of their host galaxy type.

Evolution test: Comparison of low- and high-redshift events

brighter-slower relation

brighter-bluer relation > = > = > <

The SNLS Survey

(日)、

э

SN la Lightcurve Rise Time Conley et al, 2006

SN la evolution check

- Compare nearby and distant SN early lightcurve shape (B-band)
 - nearby: 19.58 ± 0.2
 - distant: $19.10 \pm 0.2(stat) \pm 0.2(sys)$

The SNLS Survey

Analysis

SN Ia Properties and Host Galaxies Sullivan, LeBorgne et al, 2006

SNe exploding in a high SFR environment

- display a larger stretch (and are brighter)
- ⇒ younger progenitors produce brighter SNe Ia ?

no impact on the distance measurement for the 1 year sample

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Evolution test: Standardization Parameters vs. Host Galaxy Type

(Sullivan, 2008)

Summary

- SNLS3 : largest homogeneous highz SNe sample
 - 234 SNLS SNe Ia 0.1 < z < 1.05
 - current world sample: 180(*) Kowalski et al. (2008)
- Uncertainties on *w* (lowz +SNLS3 SNe + BAO Eisenstein, 2005)

$$w = 1.xx + 0.077(stat) + 0.071(syst)$$

- Statistical uncertainty limited by lowz sample
- Systematic uncertainty dominated by
 - difficult calibration against UBVRI lowz photometry
 - lowz Malmquist bias
- Near future: combined SDSS/SNLS analysis (same statistics, lower systematics)

SDSS

• 2005 & 2006 Campaigns

- 327 spectroscopically confirmed la's
- 31 probable la
- 44 confirmed other SN types
- Galaxy redshifts for 60 additional candidates
- 1st year analysis nearly complete
- $\sim 40\%$ of all discovered SNe in 2005 & 2006

The SNLS Survey

Analysis

SDSS SN la Lightcurves

ロト 《聞 》 《 臣 》 《 臣 》 「臣 」 のへで

The SNLS Survey

Analysis

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Forecasts for constant w (with BAO) Expected realistic statistical improvements of the (Ω_m, w) constraints

	Nearby	44	∞	44	132	132	250
	Distant	71	71	213	213	500	500
current	$\sigma(\Omega_m)$	0.023	0.019	0.019	0.019	0.018	0.018
BAO	$\sigma(w_0)$	0.088	0.073	0.076	0.064	0.060	0.055
BAO ×2	$\sigma(\Omega_m)$	0.016	0.014	0.014	0.013	0.013	0.013
(8000 deg^2)	$\sigma(w_0)$	0.081	0.062	0.067	0.054	0.049	0.044

• + systematics . . .

Summary

- SNe Ia are excellent distance indicators. Significant constraints on w require combining with constraints from other experiments (M)
- 2nd generation projects (ESSENCE, SNLS, SLOAN/SN) are getting more and higher quality data toward building a systematic limited Hubble diagram with ~ 1000 SN Ia
- Expected precision on (flat Univ., constant) w by 2009-2010 :

$$\pm 0.05(stat) \pm 0.05(syst)$$

 Percent precision on w and significant precision on w' (w_a) with SN will require exquisite control of systematics

Summary

- Lessons for future high-z SN projects:
- More and better quality nearby SNe (badly) needed
- Statistics matters: most of the (known) systematic uncertainties are not systematics since they can (in principle) be reduced with high statistics of both low- and high-redshift (well measured) SNe
- Need to reduce the photometric calibration uncertainty:
 - "internal" (uniformity & stability)
 - "external" (primary standard or physical (B R)) which both will need to be controlled/understood at $\sim 0.1\%$ ($\sim 1\%$ today)

Summary

- SNLS Survey ended in June 2008
- 3-year analysis close to publication
- $\sigma_w \sim 6\% ({
 m stat})$ 8% (sys, dominated by low-z sample)
- Main challenges
 - Photometric calibration (will be a limiting factor is the future surveys)
 - Understanding the color corrections (dust ? intrinsic corrections ?)
 - SN properties w.r.t. their environment (evolution)
- Priorities
 - new low-z (z < 0.1) samples
 - in the same photometric system
 - with well controlled detection efficiency
 - with a wide spectral coverage

The SNLS Survey

Analysis 0000000

Instrumental Calibration: SNDICE

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ